论文标题

点过程生成的粒子梯度下降模型

Particle gradient descent model for point process generation

论文作者

Brochard, Antoine, Błaszczyszyn, Bartłomiej, Mallat, Stéphane, Zhang, Sixin

论文摘要

本文介绍了一个固定的厄贡点过程的统计模型,该模型是根据在方形窗口中观察到的单个实现估计的。使用随机几何形状中的现有方法,很难用大量颗粒形成的复杂几何形状进行建模。受到采样最大渗透模型的梯度下降算法的最新作品的启发,我们描述了一个模型,该模型允许快速采样新的配置,从而再现了给定观察的统计数据。从初始随机配置开始,其颗粒根据能量的梯度移动,以匹配一组规定的矩(功能)。我们的矩是通过相谐波操作员在点模式的小波变换上定义的。它们允许一个人捕获粒子之间的多尺度相互作用,同时按照模型的结构的尺度明确控制矩数。我们介绍了具有各种几何结构的点过程的数值实验,并通过光谱和拓扑数据分析评估模型的质量。

This paper presents a statistical model for stationary ergodic point processes, estimated from a single realization observed in a square window. With existing approaches in stochastic geometry, it is very difficult to model processes with complex geometries formed by a large number of particles. Inspired by recent works on gradient descent algorithms for sampling maximum-entropy models, we describe a model that allows for fast sampling of new configurations reproducing the statistics of the given observation. Starting from an initial random configuration, its particles are moved according to the gradient of an energy, in order to match a set of prescribed moments (functionals). Our moments are defined via a phase harmonic operator on the wavelet transform of point patterns. They allow one to capture multi-scale interactions between the particles, while controlling explicitly the number of moments by the scales of the structures to model. We present numerical experiments on point processes with various geometric structures, and assess the quality of the model by spectral and topological data analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源