论文标题

进化时间尺度的形态发展:机器人发育进化

Morphological Development at the Evolutionary Timescale: Robotic Developmental Evolution

论文作者

Benureau, Fabien C. Y., Tani, Jun

论文摘要

进化和发展在不同的时间范围内运作;一个世代,另一个人的寿命。这两个过程是地球上生命大部分时间的基础,以许多非平凡的方式相互作用,但是对于大多数多细胞生命形式而言,它们都观察到它们的时间层次结构 - 进化的总体发展。但是,在设计机器人时,此宗旨会提升:它变得 - 无论是自然的 - 一种设计选择。我们建议将这种时间层次结构倒置,并在系统发育时间范围内设计一个发展过程。通过经典的进化搜索旨在为Tentacle 2D机器人找到良好的步态,我们在机器人的形态上添加了一个发展过程。在一代人中,机器人的形态不会改变。但是,从一代到另一代,形态发展。就像随着年龄的增长,我们变得更大,更强壮,更重一样,我们的机器人在每一代人的情况下都会更大,更强大,更重。我们的机器人从婴儿形态开始,后来几千代,最终是成年人的。我们表明,这与仅使用成人机器人的进化搜索产生更好和质量的步态,并且可以通过促进探索来防止过早收敛。此外,我们从文献中验证了对体素晶格3D机器人的方法,并将其与最近的进化发展方法进行了比较。我们的方法在概念上很简单,并且可以对机器人的小型或大型机器人有效,并且对机器人及其形态而不是任务或环境有效。此外,通过将进化搜索作为学习过程,可以在发展学习机器人技术的背景下查看这些结果。

Evolution and development operate at different timescales; generations for the one, a lifetime for the other. These two processes, the basis of much of life on earth, interact in many non-trivial ways, but their temporal hierarchy -- evolution overarching development -- is observed for most multicellular lifeforms. When designing robots however, this tenet lifts: it becomes -- however natural -- a design choice. We propose to inverse this temporal hierarchy and design a developmental process happening at the phylogenetic timescale. Over a classic evolutionary search aimed at finding good gaits for tentacle 2D robots, we add a developmental process over the robots' morphologies. Within a generation, the morphology of the robots does not change. But from one generation to the next, the morphology develops. Much like we become bigger, stronger, and heavier as we age, our robots are bigger, stronger and heavier with each passing generation. Our robots start with baby morphologies, and a few thousand generations later, end-up with adult ones. We show that this produces better and qualitatively different gaits than an evolutionary search with only adult robots, and that it prevents premature convergence by fostering exploration. In addition, we validate our method on voxel lattice 3D robots from the literature and compare it to a recent evolutionary developmental approach. Our method is conceptually simple, and can be effective on small or large populations of robots, and intrinsic to the robot and its morphology, not the task or environment. Furthermore, by recasting the evolutionary search as a learning process, these results can be viewed in the context of developmental learning robotics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源