论文标题
使用光学驱动的微球直接测量不稳定的微观stokes流动
Direct Measurement of Unsteady Microscale Stokes Flow Using Optically Driven Microspheres
论文作者
论文摘要
关于真核鞭毛动力学的越来越多的工作指出,它们的振荡频率足够高,以至于不稳定的Stokes流的粘性穿透深度与鞭毛同步的尺度相当。将这些效应纳入同步理论需要了解围绕振荡体的全球不稳定流动。然而,对于这种不稳定的stokes流的最基本方面的显微镜,没有精确的实验测试:被动示踪剂的轨道和远处流体的振荡响应与驱动粒子的振荡响应之间的位置依赖相位滞后。在这里,我们报告了这种不稳定流程的第一个直接拉格朗日测量。该方法使用$ 30 $的亚微米示踪剂颗粒,该颗粒位于一个较大的中央粒子相对于一个较大的中央粒子,在一系列距离和角度位置定位,然后由高达$ 400 $ hz的频率驱动。在这个微观尺度中,示踪剂动力学通过对粒子运动和有限频率校正对Stokes阻力定律的有限频率校正的较小程度大大简化了。发现示踪剂显示出椭圆形的lissajous数字,其方向和几何形状与基础动力学的低频扩展一致,并且与振荡轴平行和正交的运动相位相移表现出距离和角度的预测尺度形式。讨论了这些结果对同步动力学的可能影响。
A growing body of work on the dynamics of eukaryotic flagella has noted that their oscillation frequencies are sufficiently high that the viscous penetration depth of unsteady Stokes flow is comparable to the scales over which flagella synchronize. Incorporating these effects into theories of synchronization requires an understanding of the global unsteady flows around oscillating bodies. Yet, there has been no precise experimental test on the microscale of the most basic aspects of such unsteady Stokes flow: the orbits of passive tracers and the position-dependent phase lag between the oscillating response of the fluid at a distant point and that of the driving particle. Here, we report the first such direct Lagrangian measurement of this unsteady flow. The method uses an array of $30$ submicron tracer particles positioned by a time-shared optical trap at a range of distances and angular positions with respect to a larger, central particle, which is then driven by an oscillating optical trap at frequencies up to $400$ Hz. In this microscale regime, the tracer dynamics is considerably simplified by the smallness of both inertial effects on particle motion and finite-frequency corrections to the Stokes drag law. The tracers are found to display elliptical Lissajous figures whose orientation and geometry are in agreement with a low-frequency expansion of the underlying dynamics, and the experimental phase shift between motion parallel and orthogonal to the oscillation axis exhibits a predicted scaling form in distance and angle. Possible implications of these results for synchronization dynamics are discussed.