论文标题
相对于具有固定参数的特殊椭圆异构体的PU(2,1)的长度
The length of PU(2,1) relative to special elliptic isometries with fixed parameter
论文作者
论文摘要
概括复杂双曲机平面的相关长度,我们可以获得$α$长度的$ \ m artrm {pu}(2,1)$是$ 4 $,也就是说,$ \ mathrm {pu}(2,1)$的每个元素都可以被分解为最多可作为$ 4 $ $ 4 $ ELLIPTIC ISOMETRIES的产品。我们还描述了可以写入$ 2 $或$ 3 $的异构体此类特殊的椭圆异构体。
Generalizing the involution length of the complex hyperbolic plane, we obtain that the $α$-length of $\mathrm{PU}(2,1)$ is $4$, that is, every element of $\mathrm{PU}(2,1)$ can be decomposed as the product of at most $4$ special elliptic isometries with parameter $α$. We also describe the isometries that can be written as the product of $2$ or $3$ such special elliptic isometries.