论文标题

尖峰神经网络的合奏

Ensembles of Spiking Neural Networks

论文作者

Neculae, Georgiana, Rhodes, Oliver, Brown, Gavin

论文摘要

本文演示了如何在MNIST,NMNIST和DVS手势数据集上构建产生最先进的结果的尖峰神经网络的集合,从而产生最先进的结果。此外,使用简化的单个模型可以实现此性能,其中包含不到已发布参考模型参数的50%的合奏。我们对尖峰火车解释方法的效果进行了全面的探索,并得出了结合模型预测的理论方法,从而保证了尖峰集合的性能改进。为此,我们将尖峰神经网络形式化为GLM预测指标,并确定其目标域的合适表示形式。此外,我们展示了如何使用歧义分解来测量尖峰集合的多样性。这项工作表明了结合能如何克服可以与传统深层神经网络竞争的单个SNN模型的挑战,并创建具有更少可训练参数和较小内存足迹的系统,为低功率边缘应用打开了大门,例如。在神经形态硬件上实施。

This paper demonstrates how to construct ensembles of spiking neural networks producing state-of-the-art results, achieving classification accuracies of 98.71%, 100.0%, and 99.09%, on the MNIST, NMNIST and DVS Gesture datasets respectively. Furthermore, this performance is achieved using simplified individual models, with ensembles containing less than 50% of the parameters of published reference models. We provide comprehensive exploration on the effect of spike train interpretation methods, and derive the theoretical methodology for combining model predictions such that performance improvements are guaranteed for spiking ensembles. For this, we formalize spiking neural networks as GLM predictors, identifying a suitable representation for their target domain. Further, we show how the diversity of our spiking ensembles can be measured using the Ambiguity Decomposition. The work demonstrates how ensembling can overcome the challenges of producing individual SNN models which can compete with traditional deep neural networks, and creates systems with fewer trainable parameters and smaller memory footprints, opening the door to low-power edge applications, e.g. implemented on neuromorphic hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源