论文标题

F理论振幅

F-theory amplitudes

论文作者

Siegel, Warren, Wang, Yu-Ping

论文摘要

我们为三维F理论提出了4点S型。我们将使用扭曲的形式主义来促进构建幅度。我们以某种方式编写幅度,以使F-对称性(U-偶性对称性)体现出来。振幅可以示意性地写入$ a_ {4} = w^{4}/stu $,其中$ w $是F-Bewory中线性化的Weyl Tensor的类似物,而$ W^{4} $是Weyl Tensors之间可能发生各种收缩的总和。仪表不变性实际上并非繁琐,因为$ w $通常不是规格不变的。在扭曲形式主义的帮助下,可以验证该公式确实是规范的不变性。幅度还减少到Mheory的降低(仅4D超级)下的普通4-Graviton振幅。

We propose 4-point S-matrices for three-dimensional F-theory. We will use the twistor formalism to facilitate constructing the amplitude. We write the amplitude in a way such that the F-symmetry (U-duality symmetry) is manifest. The amplitude can be schematically written as $A_{4} = w^{4}/stu$, where $w$ is an analog of the linearized Weyl tensor in F-theory, and $w^{4}$ is a shorthand for the sum of various contractions that can happen between the Weyl tensors. The gauge invariance is actually non-trivial since $w$ is in general not gauge invariant. With the help of the twistor formalism, one can verify that this formula is indeed gauge invariant. The amplitude also reduces to the ordinary 4-graviton amplitude under the reduction to M-theory (which is just 4D supergravity).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源