论文标题

拓扑动力和nip场

Topological dynamics and NIP fields

论文作者

Jagiella, Grzegorz

论文摘要

我们研究了在任意nip field $ k $上的某些代数群体行动的可定义拓扑动态。我们表明,如果$ k $的乘法群体不是类型的连接,则可以找到一种对Ellis组的猜想,尤其是在DP-Minimal Fields的情况下,$ k $的乘法组与$ k $的乘法组无关,尤其是在dp-Minimal Fields的情况下,$ k $ of $ \ mathrm {sl} _2(k)$的通用定义流的ELLIS组是非平凡的。我们还研究了$ k $的代数群体的某些结构理论,该理论具有可确定的f-enerics。

We study definable topological dynamics of some algebraic group actions over an arbitrary NIP field $K$. We show that the Ellis group of the universal definable flow of $\mathrm{SL}_2(K)$ is non-trivial if the multiplicative group of $K$ is not type-definably connected, providing a way to find multiple counterexamples to the Ellis group conjecture, particularly in the case of dp-minimal fields. We also study some structure theory of algebraic groups over $K$ with definable f-generics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源