论文标题
非线性Schrödinger方程的阈值解决方案
Threshold solutions for the nonlinear Schrödinger equation
论文作者
论文摘要
我们研究了$ \ mathbb {r}^n $中的焦点NLS方程,该方程在质量批量生态和能量肯定(或中批判性)方程中,并在质量增强的阈值$ \ nathcal $ \ mathcal {me}(me_0)(u_0)= \ nathcal {mecalcal {me}(me}(q)$,$ h^1 $ data中此前,杜克·卡特(Duyckaerts-Merle)在$ h^1 $ - 关键案例中研究了阈值解决方案的行为,在尺寸上$ n = 3,4,5 $,后来由li-zhang推广到更高维度。在中间临界的情况下,杜克·鲁登科研究了3D立方NLS方程的阈值问题。 在本文中,我们将Duyckaerts-Roudenko的结果概括为整个不政治范围的任何维度和非线性的任何功能。我们展示了特殊解决方案的存在,即$ q^\ pm $,除了常驻波$ e^{it} q $,它指数沿正向时间方向呈指数接近,但在负时间的行为上有所不同。我们在阈值水平上分类所有解决方案,显示爆炸发生在有限的(正和负时间)中,或者在两个时间方向上散射,或者该溶液等于上面的三个特殊解决方案之一,直到对称性。我们的证明扩展到$ h^1 $ - 批判性案例,从而提供了与li-zhang结果不同,更统一的方法。 这些结果是通过研究常驻波周围的线性化方程以及对NLS方程的一些量身定制的近似解。我们建立了与线性化Schrödinger运算符相关的函数的重要衰减特性,该功能与在特殊子空间上线性化的操作员的调节稳定性和强制性结合使用,使我们能够使用固定点参数来显示特殊解决方案的存在。最后,我们通过将指数衰减的解决方案呈指数衰减,证明了唯一性。
We study the focusing NLS equation in $\mathbb{R}^N$ in the mass-supercritical and energy-subcritical (or intercritical) regime, with $H^1$ data at the mass-energy threshold $ \mathcal{ME}(u_0)=\mathcal{ME}(Q)$, where $Q$ is the ground state. Previously, Duyckaerts-Merle studied the behavior of threshold solutions in the $H^1$-critical case, in dimensions $N = 3, 4, 5$, later generalized by Li-Zhang for higher dimensions. In the intercritical case, Duyckaerts-Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts-Roudenko for any dimension and any power of the nonlinearity for the entire intecritical range. We show the existence of special solutions, $Q^\pm$, besides the standing wave $e^{it}Q$, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify all solutions at the threshold level, showing either blow-up occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the $H^1$-critical case, thus, giving a different and more unified approach than the Li-Zhang result. These results are obtained by studying the linearized equation around the standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixed-point argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations.