论文标题
设计用于多商品运输问题的最佳网络
Designing optimal networks for multi-commodity transport problem
论文作者
论文摘要
在许多情况下,在网络中设计和优化不同的流是一个相关问题。虽然针对单商品案例的物理和最佳运输文献提出了许多方法,但对于多商品场景,我们缺乏相似的结果。在本文中,我们提出了一个基于最佳传输理论的模型,用于在网络上找到最佳的多商品流程配置。该模型引入了一个动力学,该动力学调节边缘电导率,以在无限的时候达到最少的lyapunov功能,由凸运输成本和凹面基础设施成本的总和给出。我们表明,这种动力学的长期渐近学是标准约束优化问题的解决方案,该问题概括了单商品框架。我们的结果为最佳网络拓扑的性质和特性提供了新的见解。特别是,它们表明,由于区分不同的流动类型,可以出现循环,从而补充了先前的结果,而在单商品案例中,循环是由于向来源和下沉施加动态规则的结果,或者在对损害强大的损害强度强度时。最后,我们提供了模型的有效实现,该模型比基于梯度下降的标准优化方法更快地收敛。
Designing and optimizing different flows in networks is a relevant problem in many contexts. While a number of methods have been proposed in the physics and optimal transport literature for the one-commodity case, we lack similar results for the multi-commodity scenario. In this paper we present a model based on optimal transport theory for finding optimal multi-commodity flow configurations on networks. This model introduces a dynamics that regulates the edge conductivities to achieve, at infinite times, a minimum of a Lyapunov functional given by the sum of a convex transport cost and a concave infrastructure cost. We show that the long time asymptotics of this dynamics are the solutions of a standard constrained optimization problem that generalizes the one-commodity framework. Our results provide new insights into the nature and properties of optimal network topologies. In particular, they show that loops can arise as a consequence of distinguishing different flow types, complementing previous results where loops, in the one-commodity case, were obtained as a consequence of imposing dynamical rules to the sources and sinks or when enforcing robustness to damage. Finally, we provide an efficient implementation of our model which convergences faster than standard optimization methods based on gradient descent.