论文标题

光谱计算机断层扫描的四阶非局部张量分解模型

Fourth-Order Nonlocal Tensor Decomposition Model for Spectral Computed Tomography

论文作者

Chen, Xiang, Xia, Wenjun, Liu, Yan, Chen, Hu, Zhou, Jiliu, Zhang, Yi

论文摘要

光谱计算机断层扫描(CT)可以使用光子计数检测器(PCD)重建来自不同能量箱的光谱图像。但是,由于光子的光子有限和相应光谱级分的计数速率,重建的光谱图像通常会遭受严重的噪声。在本文中,提出了光谱CT图像重建(FONT-SIR)方法的四阶非局部张量分解模型。同时在空间和光谱尺寸中收集类似的斑块,以形成基本的张量单元。此外,主成分分析(PCA)用于从斑块中提取潜在特征,以进行强大而有效的相似性度量。然后,在产生的四阶张量单元上进行低级别和稀疏性分解,加权核标准和总变化(TV)标准分别用于强制执行低级别和稀疏性约束。采用乘数的交替方向方法(ADMM)来优化目标函数。我们提出的字体-SIR的实验结果表明,相对于几种最先进的方法,就噪声抑制和细节保存而言,模拟和真实数据集具有较高的定性和定量性能。

Spectral computed tomography (CT) can reconstruct spectral images from different energy bins using photon counting detectors (PCDs). However, due to the limited photons and counting rate in the corresponding spectral fraction, the reconstructed spectral images usually suffer from severe noise. In this paper, a fourth-order nonlocal tensor decomposition model for spectral CT image reconstruction (FONT-SIR) method is proposed. Similar patches are collected in both spatial and spectral dimensions simultaneously to form the basic tensor unit. Additionally, principal component analysis (PCA) is applied to extract latent features from the patches for a robust and efficient similarity measure. Then, low-rank and sparsity decomposition is performed on the produced fourth-order tensor unit, and the weighted nuclear norm and total variation (TV) norm are used to enforce the low-rank and sparsity constraints, respectively. The alternating direction method of multipliers (ADMM) is adopted to optimize the objective function. The experimental results with our proposed FONT-SIR demonstrates a superior qualitative and quantitative performance for both simulated and real data sets relative to several state-of-the-art methods, in terms of noise suppression and detail preservation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源