论文标题

使用半透明有机发光二极管的光学脑成像

Optical brain imaging using a semi-transparent organic light-emitting diode

论文作者

Matarèse, Bruno F. E., Roux, Sébastien, Chavane, Frédéric, deMello, John C.

论文摘要

我们报告了基于橙色发光聚合物(LEP)Livilux PDO-124的半透明有机发光二极管(OLED)的光学脑成像。 OLED用作紧凑的延伸光源,当放置在头骨上的毛刺孔上时,能够均匀地照亮皮质表面。由于OLED的所有层基本上都透明到具有低于LEP的光学间隙的光子,因此皮质表面发出或反射的光可以通过OLED有效地传输到低放大倍数显微镜('Moccopepopepoper')的物镜。 OLED可以靠近皮质表面,从而有效地将入射光耦合到脑腔中。此外,可以将宏观镜放置在OLED的上表面附近,从而有效地收集了从皮质表面的反射/发射光。因此,使用半透明的OLED可以简化光学设置,同时保持高灵敏度。此处将OLED应用于最苛刻的光学脑成像之一,即涉及电压敏感染料(VSD)的外部光学成像。具体而言,我们使用电压敏感的染料RH-1691作为记者,对大鼠的主要视觉皮层(V1)进行功能成像。通过OLED光源成像,由于视觉刺激后神经元膜电位的变化,我们能够解决染料荧光强度的较小(〜0.1%)的变化。结果是以一个试验的基础(即没有平均多个测量值的平均值)获得的,其时间分辨率为十毫秒。

We report optical brain imaging using a semi-transparent organic light-emitting diode (OLED) based on the orange light-emitting polymer (LEP) Livilux PDO-124. The OLED serves as a compact, extended light source which is capable of uniformly illuminating the cortical surface when placed across a burr hole in the skull. Since all layers of the OLED are substantially transparent to photons with energies below the optical gap of the LEP, light emitted or reflected by the cortical surface may be efficiently transmitted through the OLED and into the objective lens of a low magnification microscope ('macroscope'). The OLED may be placed close to the cortical surface, providing efficient coupling of incident light into the brain cavity; furthermore, the macroscope may be placed close to the upper surface of the OLED, enabling efficient collection of reflected/emitted light from the cortical surface. Hence the use of a semi-transparent OLED simplifies the optical setup, while at the same time maintaining high sensitivity. The OLED is applied here to one of the most demanding forms of optical brain imaging, namely extrinsic optical imaging involving a voltage sensitive dye (VSD). Specifically, we carry out functional imaging of the primary visual cortex (V1) of a rat, using the voltage sensitive dye RH-1691 as a reporter. Imaging through the OLED light-source, we are able to resolve small (~ 0.1 %) changes in the fluorescence intensity of the dye due to changes in the neuronal membrane potential following a visual stimulus. Results are obtained on a single trial basis -- i.e. without averaging over multiple measurements -- with a time-resolution of ten milliseconds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源