论文标题
时空编码改善神经形态触觉纹理分类
Spatio-temporal encoding improves neuromorphic tactile texture classification
论文作者
论文摘要
随着对机器人在非结构化环境中与人类一起工作的兴趣的增加,人类般的触摸感的发展变得很重要。在这项工作中,我们实施了一个多通道神经形态触觉系统,该系统将触点事件编码为离散的尖峰事件,这些事件模仿了缓慢适应机械感受器的行为。我们研究了跨人工机械感受器的信息集合对空间不均匀自然主义纹理的分类性能的影响。我们通过根据基于时变的平均峰值触觉响应量计算出的灰度共发生矩阵来编码机械感受器的时空激活模式。我们发现,与单独使用单个机械感受器响应相比,这种方法大大改善了纹理分类。此外,性能对于滑动速度的变化也更加健壮。从以下事实中可以明显看出,在去除精确的时间信息或改变响应模式的空间结构时,观察到显着的性能下降的事实可以明显看出感觉到感觉通道之间的精确空间和时间相关的重要性。因此,这项研究表明了人口编码方法的优越性,可以利用用机械感受器种群激活模式编码的精确时空信息。因此,它朝着机器人和假体中现实的触摸应用所需的生物启发触觉系统的发展方向发展。
With the increase in interest in deployment of robots in unstructured environments to work alongside humans, the development of human-like sense of touch for robots becomes important. In this work, we implement a multi-channel neuromorphic tactile system that encodes contact events as discrete spike events that mimic the behavior of slow adapting mechanoreceptors. We study the impact of information pooling across artificial mechanoreceptors on classification performance of spatially non-uniform naturalistic textures. We encoded the spatio-temporal activation patterns of mechanoreceptors through gray-level co-occurrence matrix computed from time-varying mean spiking rate-based tactile response volume. We found that this approach greatly improved texture classification in comparison to use of individual mechanoreceptor response alone. In addition, the performance was also more robust to changes in sliding velocity. The importance of exploiting precise spatial and temporal correlations between sensory channels is evident from the fact that on either removal of precise temporal information or altering of spatial structure of response pattern, a significant performance drop was observed. This study thus demonstrates the superiority of population coding approaches that can exploit the precise spatio-temporal information encoded in activation patterns of mechanoreceptor populations. It, therefore, makes an advance in the direction of development of bio-inspired tactile systems required for realistic touch applications in robotics and prostheses.