论文标题
比赛的路径分解
Path decompositions of tournaments
论文作者
论文摘要
1976年,Alspach,Mason和Pullman猜想,可以将任何比赛$ t $均匀分解为$ {\ rm ex}(t)$路径,其中$ {\ rm ex}(t)(t):= \ frac {1} {1} {2} {2} {2} {2} \ sum_ {v \ in v {v \ in v {t)我们证明了所有足够大型比赛的猜想。我们还证明了零顺序比赛的渐近最佳结果。
In 1976, Alspach, Mason, and Pullman conjectured that any tournament $T$ of even order can be decomposed into exactly ${\rm ex}(T)$ paths, where ${\rm ex}(T):= \frac{1}{2}\sum_{v\in V(T)}|d_T^+(v)-d_T^-(v)|$. We prove this conjecture for all sufficiently large tournaments. We also prove an asymptotically optimal result for tournaments of odd order.