论文标题

在无限规则镶嵌图上的任意图案形成

Arbitrary Pattern Formation on Infinite Regular Tessellation Graphs

论文作者

Cicerone, Serafino, Di Fonso, Alessia, Di Stefano, Gabriele, Navarra, Alfredo

论文摘要

给定一组机器人,每个机器人都位于无限常规镶嵌图的不同顶点,我们旨在探索任意模式形成(APF)问题。在给定一个网格顶点的多组f中,| r | = | f |,APF要求提供一种分布式算法,该算法移动机器人,以达到类似于F的配置。相似性意味着必须将机器人作为F处置为F,而不管翻译,旋转,反射。到目前为止,在经典的外观摩托车模型的背景下,仅考虑了标准的平方网格,以使欧几里得平面离散。但是,自然也可以考虑三角形和六边形网格的其他常规镶嵌图。当初始配置不对称时,我们为APF提供了分辨率算法,并且所考虑的拓扑是任何常规的镶嵌图。

Given a set R of robots, each one located at different vertices of an infinite regular tessellation graph, we aim to explore the Arbitrary Pattern Formation (APF) problem. Given a multiset F of grid vertices such that |R|=|F|, APF asks for a distributed algorithm that moves robots so as to reach a configuration similar to F. Similarity means that robots must be disposed as F regardless of translations, rotations, reflections. So far, as possible graph discretizing the Euclidean plane only the standard square grid has been considered in the context of the classical Look-Compute-Move model. However, it is natural to consider also the other regular tessellation graphs, that are triangular and hexagonal grids. We provide a resolution algorithm for APF when the initial configuration is asymmetric and the considered topology is any regular tessellation graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源