论文标题
与巨大颗粒散射幅度的递归关系
Recursion relations for scattering amplitudes with massive particles
论文作者
论文摘要
我们使用了最近开发的大型纺纱形式形式主义[1] [1]。提出了一类新的递归关系,以介绍树理论中的树级振幅。这些关系基于无质量和大量外部动量的组合复杂变形。我们使用这些关系来研究标量QCD中的树级振幅,以及在Yang-Mills理论的希格斯阶段中涉及大量载体玻色子的振幅。我们通过证明了两个外部粒子的无限矩段的极限来证明我们的提议的有效性,振幅再次由增强的自旋 - 洛伦兹对称性控制,与BCFW Shift的证据相似,以实现BCFW的证明。简单的例子说明,提出的转移可能导致对树级振幅的有效计算。
We use the recently developed massive spinor-helicity formalism [1] of Arkani- Hamed et al. to propose a new class of recursion relations for tree-level amplitudes in gauge theories. These relations are based on a combined complex deformation of massless as well as massive external momenta. We use these relations to study tree-level amplitudes in scalar QCD as well as amplitudes involving massive vector bosons in the Higgsed phase of Yang-Mills theory. We prove the validity of our proposal by showing that in the limit of infinite momenta of two of the external particles, the amplitude once again is controlled by an enhanced Spin-Lorentz symmetry paralleling the proof of BCFW shift for massless gauge theories. Simple examples illustrate that the proposed shift may lead to an efficient computation of tree-level amplitudes.