论文标题
EdgeBench:用于边缘计算的基于工作流程的基准测试
EdgeBench: A Workflow-based Benchmark for Edge Computing
论文作者
论文摘要
已经开发了边缘计算来利用多个资源来实现隐私,成本和服务质量(QoS)原因。边缘工作负载具有数据驱动和延迟敏感的特征。因此,边缘系统已经发展为异质和分布。边缘工作负载和边缘系统的独特特征具有激励型边缘,基于工作流程的基准旨在提供探索边缘工作负载和边缘系统的完整设计空间的能力。 EdgeBench既可以自定义又具有代表性。它允许用户自定义边缘工作负载的工作流程逻辑,数据存储后端以及单个工作流阶段的分布到不同的计算层。为了说明EdgeBench的可用性,我们还实施了两个代表性的边缘工作流,视频分析工作流程和一个IoT Hub工作流,该工作流程代表了两个不同但常见的边缘工作负载。使用EdgeBench报告的工作流级和功能级指标评估这两个工作流程,以说明边缘系统的性能瓶颈和边缘工作负载。
Edge computing has been developed to utilize multiple tiers of resources for privacy, cost and Quality of Service (QoS) reasons. Edge workloads have the characteristics of data-driven and latency-sensitive. Because of this, edge systems have developed to be both heterogeneous and distributed. The unique characteristics of edge workloads and edge systems have motivated EdgeBench, a workflow-based benchmark aims to provide the ability to explore the full design space of edge workloads and edge systems. EdgeBench is both customizable and representative. It allows users to customize the workflow logic of edge workloads, the data storage backends, and the distribution of the individual workflow stages to different computing tiers. To illustrate the usability of EdgeBench, we also implements two representative edge workflows, a video analytics workflow and an IoT hub workflow that represents two distinct but common edge workloads. Both workflows are evaluated using the workflow-level and function-level metrics reported by EdgeBench to illustrate both the performance bottlenecks of the edge systems and the edge workloads.