论文标题

连续和分类预测因子的顺序仿冒品:应用于大型银屑病关节炎临床试验池

Sequential knockoffs for continuous and categorical predictors: with application to a large Psoriatic Arthritis clinical trial pool

论文作者

Kormaksson, Matthias, Kelly, Luke J., Zhu, Xuan, Haemmerle, Sibylle, Pricop, Luminita, Ohlssen, David

论文摘要

仿制提供了一个通用框架,用于在执行变量选择时控制错误的发现率。许多仿制文献都集中在理论挑战上,我们认识到需要将一些当前的思想付诸实践。在本文中,我们提出了一种顺序算法,用于生成仿冒品,当时数据由连续和分类(因子)变量组成。此外,我们提出了一种启发式的多个仿制方法,该方法对给定数据集的仿冒选择过程的鲁棒性进行了实际评估。我们进行广泛的模拟以验证拟议方法的性能。最后,我们证明了这些方法在大型临床数据库上,该临床数据库超过2,000美元,该数据库在4项临床试验中评估了牛皮癣关节炎患者,其中包括IL-17A抑制剂secukinumab(cosentyx),我们确定了良好确定的临床结果的预后因素。本文提供的分析可以为医学实践和其他引起可变选择特别感兴趣的其他领域中常见的数据集提供广泛的应用。

Knockoffs provide a general framework for controlling the false discovery rate when performing variable selection. Much of the Knockoffs literature focuses on theoretical challenges and we recognize a need for bringing some of the current ideas into practice. In this paper we propose a sequential algorithm for generating knockoffs when underlying data consists of both continuous and categorical (factor) variables. Further, we present a heuristic multiple knockoffs approach that offers a practical assessment of how robust the knockoff selection process is for a given data set. We conduct extensive simulations to validate performance of the proposed methodology. Finally, we demonstrate the utility of the methods on a large clinical data pool of more than $2,000$ patients with psoriatic arthritis evaluated in 4 clinical trials with an IL-17A inhibitor, secukinumab (Cosentyx), where we determine prognostic factors of a well established clinical outcome. The analyses presented in this paper could provide a wide range of applications to commonly encountered data sets in medical practice and other fields where variable selection is of particular interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源