论文标题
铅:从物理角度来看最小最大优化
LEAD: Min-Max Optimization from a Physical Perspective
论文作者
论文摘要
诸如生成对抗网络(GAN)之类的对抗性配方重新点燃了对两人Min-Max游戏的兴趣。优化此类游戏的核心障碍是旋转动力学阻碍了它们的收敛性。在本文中,我们显示游戏优化与受多力的粒子系统共享动态属性,并且可以利用物理学的工具来改善优化动力学。受物理框架的启发,我们提出了Lead,这是Min-Max游戏的优化器。接下来,使用Lyapunov稳定性理论和光谱分析,我们研究了一类二次Min-Max游戏的连续和离散时间设置中的铅的收敛性能,以证明与NASH平衡的线性收敛。最后,我们对合成设置和CIFAR-10产生的凭经验评估我们的方法,以证明GAN训练的改进。
Adversarial formulations such as generative adversarial networks (GANs) have rekindled interest in two-player min-max games. A central obstacle in the optimization of such games is the rotational dynamics that hinder their convergence. In this paper, we show that game optimization shares dynamic properties with particle systems subject to multiple forces, and one can leverage tools from physics to improve optimization dynamics. Inspired by the physical framework, we propose LEAD, an optimizer for min-max games. Next, using Lyapunov stability theory and spectral analysis, we study LEAD's convergence properties in continuous and discrete time settings for a class of quadratic min-max games to demonstrate linear convergence to the Nash equilibrium. Finally, we empirically evaluate our method on synthetic setups and CIFAR-10 image generation to demonstrate improvements in GAN training.