论文标题

圆盘主导星系的内在形状的红移和出色的质量依赖于$ z = 1.0 $的宇宙观测值

Redshift and stellar mass dependence of intrinsic shapes of disc-dominated galaxies from COSMOS observations below $z = 1.0$

论文作者

Hoffmann, Kai, Laigle, Clotilde, Chisari, Nora Elisa, Tallada, Pau, Teyssier, Romain, Dubois, Yohan, Devriendt, Julien

论文摘要

圆盘星系的高丰度没有大型中央凸起的挑战,可以预测星系形成的当前流体动力学模拟。我们的目的是通过研究红移$ z = 1.0 $的宇宙星系调查中的固有3D形状分布的红移和质量依赖来阐明这些物体的形成。从观察到的2D形状的分布中,使用重建方法可以推断出这种分布,我们使用流体动力学模拟测试。我们的测试表明,推断的平均盘循环和相对厚度有中等偏差,但对这些数量的分散体有很大的偏差。在COSMOS数据上应用重建方法,我们发现平均圆盘循环和相对厚度的变化分别为$ \ sim1 \%$和$ \ sim10 \%$,这与这些数量的错误估计相当。平均相对圆盘厚度显示出明显的质量依赖性,可以通过带有星系质量的圆盘半径的缩放来解释。我们得出的结论是,我们的数据没有提供证据表明,在我们的分析中,相对于统计不确定性,对椎间盘主导的星系的平均循环和绝对厚度具有很大的依赖性。如果没有影响星系形状的破坏性合并或反馈事件,这些发现是可以预期的。因此,它们支持一种场景,其中当今的光盘早期形成($ z> 1.0 $),然后孤立地进行宁静的演变。但是,需要更多数据和更好地了解系统学,以重申我们的结果。

The high abundance of disc galaxies without a large central bulge challenges predictions of current hydrodynamic simulations of galaxy formation. We aim to shed light on the formation of these objects by studying the redshift and mass dependence of their intrinsic 3D shape distributions in the COSMOS galaxy survey below redshift $z=1.0$. This distribution is inferred from the observed distribution of 2D shapes, using a reconstruction method which we test using hydrodynamic simulations. Our tests reveal a moderate bias for the inferred average disc circularity and relative thickness, but a large bias on the dispersion of these quantities. Applying the reconstruction method on COSMOS data, we find variations of the average disc circularity and relative thickness with redshift of around $\sim1\%$ and $\sim10\%$ respectively, which is comparable to the error estimates on these quantities. The average relative disc thickness shows a significant mass dependence which can be accounted for by the scaling of disc radius with galaxy mass. We conclude that our data provides no evidence for a strong dependence of the average circularity and absolute thickness of disc-dominated galaxies on redshift and mass that is significant with respect to the statistical uncertainties in our analysis. These findings are expected in the absence of disruptive merging or feedback events that would affect galaxy shapes. They hence support a scenario where present-day discs form early ($z>1.0$) and subsequently undergo a tranquil evolution in isolation. However, more data and a better understanding of systematics are needed to reaffirm our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源