论文标题

可极化连续模型的开放量子系统理论

An Open Quantum System Theory for Polarizable Continuum Models

论文作者

Guido, Ciro A., Rosa, M., Cammi, R., Corni, S.

论文摘要

在此,溶剂中量子化学所描述的溶质的问题在这里根据开放量子系统(OQS)理论重新制定为极化连续模型(PCM)。使用其随机Schrödinger方程式公式,我们能够提供更全面的电子能量以及溶质和溶剂和溶剂电子动力学之间的耦合。特别是,OQS-PCM自然地被证明是一个统一的理论框架,包括极化和分散相互作用,溶剂波动的效果以及非马克维亚溶剂响应。因此,OQS-PCM描述了溶质与溶剂典型电子动力学时间之间的相互作用,并产生标准的PCM和所谓的Born Oppenheeimer溶剂化制度,其中溶剂电子响应被认为比在溶质中发生的任何电子动力学更快。在分析OQS-PCM时,我们获得了溶质 - 溶剂分散(van der waals)相互作用的表达式,该表达式在基于波动和响应函数的物理解释方面非常透明。最后,我们提出了支持理论发现的各种数值测试

The problem of a solute described by Quantum Chemistry within a solvent represented as a polarizable continuum model (PCM) is here reformulated in terms of the open quantum systems (OQS) theory. Using its stochastic Schrödinger Equation formulation, we are able to provide a more comprehensive picture of the electronic energies and of the coupling between solute and solvent electronic dynamics. In particular, OQS-PCM proves to be a unifying theoretical framework naturally including polarization and dispersion interactions, the effect of solvent fluctuations, and the non-Markovian solvent response. As such, the OQS-PCM describes the interplay between the solute and the solvent typical electronic dynamical times, and yields both the standard PCM and the so-called Born Oppenheimer solvation regime, where the solvent electronic response is considered faster than any electronic dynamics taking place in the solute. In analyzing the OQS-PCM, we obtained an expression for the solute-solvent dispersion (van der Waals) interactions that is very transparent in terms of a physical interpretation based on fluctuations and response functions. Finally, we present various numerical tests that support the theoretical findings

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源