论文标题

使用贝叶斯神经网络的分层推论:强力镜头的应用

Hierarchical Inference With Bayesian Neural Networks: An Application to Strong Gravitational Lensing

论文作者

Wagner-Carena, Sebastian, Park, Ji Won, Birrer, Simon, Marshall, Philip J., Roodman, Aaron, Wechsler, Risa H.

论文摘要

在过去的几年中,近似贝叶斯神经网络(BNN)证明了在前所未有的速度和规模上在广泛的推理问题上产生统计一致的后验的能力。但是,当将BNN应用于数据时,训练集与现实世界对象的分布之间的任何断开都可以引入偏差。这是天体物理学和宇宙学中的一个普遍挑战,在我们宇宙中,对象的未知分布通常是科学目标。在这项工作中,我们将具有柔性后参数化的BNN融合到一个层次推理框架中,该框架允许重建人口超参数,并消除训练分布引入的偏见。我们关注的是,鉴于哈勃太空望远镜(HST)质量单滤波器,透镜减少,合成成像数据的挑战,用于强力引力镜头质量模型参数。我们表明,在各种幂律椭圆透镜质量分布中,后PDF足够准确(即与真相一致)。然后,我们将方法应用于测试数据集的镜头参数是从与训练集截然不同的分布中汲取的。我们表明,我们的分层推理框架减轻了不代表性培训集的临时事务所引起的偏见。同时,鉴于一个足够广泛的训练集,我们可以精确地重建管理测试分布的人口超参数。从培训到数千个镜头的分层推断,我们的完整管道可以在一天之内运行。此处介绍的框架将使我们能够有效利用未来基于空间和空间的调查的全部约束功能。

In the past few years, approximate Bayesian Neural Networks (BNNs) have demonstrated the ability to produce statistically consistent posteriors on a wide range of inference problems at unprecedented speed and scale. However, any disconnect between training sets and the distribution of real-world objects can introduce bias when BNNs are applied to data. This is a common challenge in astrophysics and cosmology, where the unknown distribution of objects in our Universe is often the science goal. In this work, we incorporate BNNs with flexible posterior parameterizations into a hierarchical inference framework that allows for the reconstruction of population hyperparameters and removes the bias introduced by the training distribution. We focus on the challenge of producing posterior PDFs for strong gravitational lens mass model parameters given Hubble Space Telescope (HST) quality single-filter, lens-subtracted, synthetic imaging data. We show that the posterior PDFs are sufficiently accurate (i.e., statistically consistent with the truth) across a wide variety of power-law elliptical lens mass distributions. We then apply our approach to test data sets whose lens parameters are drawn from distributions that are drastically different from the training set. We show that our hierarchical inference framework mitigates the bias introduced by an unrepresentative training set's interim prior. Simultaneously, given a sufficiently broad training set, we can precisely reconstruct the population hyperparameters governing our test distributions. Our full pipeline, from training to hierarchical inference on thousands of lenses, can be run in a day. The framework presented here will allow us to efficiently exploit the full constraining power of future ground- and space-based surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源