论文标题

用电子梁的光学激发:挑战和机遇

Optical Excitations with Electron Beams: Challenges and Opportunities

论文作者

de Abajo, F. Javier García, Di Giulio, Valerio

论文摘要

通过电子显微镜中使用的电子束(例如电子显微镜中使用的电子束)通过分析电子能量损失和降压发光光发射,以无与伦比的组合来研究具有空间和光谱精度的光子纳米结构的强大工具。结合超快光学的结合,超快电子显微镜的新兴领域利用了针对采样结构的同步飞秒电子和轻脉冲,并有望同时将sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-mev-mev时空分辨率分辨率分辨率分辨率,以对材料和Optical-Field-Field-fielt dynamiss进行研究。此外,这些进步能够以前所未有的方式操纵单个游离电子的波函数,从而打开声音前景,以探测和控制纳米级的量子激发。在这里,我们提供了基于自由电子的光子学研究概述,并补充了原始理论见解,并讨论了挑战和机遇。特别是,我们表明,单个电子的激发概率与其波函数无关,除了在横梁密度谱的经典平均值外,两个或更多调制电子的概率取决于它们的相对空间排列,因此反映了其相互作用的量子性质。我们得出了体现这些结果的第一原理分析表达式,并且对任意形状的电子和任何类型的电子样本相互作用具有一般有效性。我们以对非侵入性光谱和显微镜的破坏性方法的各种令人兴奋的方向的看法进行结论,在纳米级处采样非线性光学响应的​​可能性,对与自由电子和光学样品模式相关的密度矩阵的操纵,以及在电子光束光学光束的光学调制中应用。

Free electron beams such as those employed in electron microscopes have evolved into powerful tools to investigate photonic nanostructures with an unrivaled combination of spatial and spectral precision through the analysis of electron energy losses and cathodoluminescence light emission. In combination with ultrafast optics, the emerging field of ultrafast electron microscopy utilizes synchronized femtosecond electron and light pulses that are aimed at the sampled structures, holding the promise to bring simultaneous sub-Angstrom--sub-fs--sub-meV space-time-energy resolution to the study of material and optical-field dynamics. In addition, these advances enable the manipulation of the wave function of individual free electrons in unprecedented ways, opening sound prospects to probe and control quantum excitations at the nanoscale. Here, we provide an overview of photonics research based on free electrons, supplemented by original theoretical insights, and discussion of challenges and opportunities. In particular, we show that the excitation probability by a single electron is independent of its wave function, apart from a classical average over the transverse beam density profile, whereas the probability for two or more modulated electrons depends on their relative spatial arrangement, thus reflecting the quantum nature of their interactions. We derive first-principles analytical expressions that embody these results and have general validity for arbitrarily shaped electrons and any type of electron-sample interaction. We conclude with perspectives on various exciting directions for disruptive approaches to non-invasive spectroscopy and microscopy, the possibility of sampling the nonlinear optical response at the nanoscale, the manipulation of the density matrices associated with free electrons and optical sample modes, and applications in optical modulation of electron beams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源