论文标题
BCI学习在M/EEG多路复用大脑网络中诱导核心 - 周期重组
BCI learning induces core-periphery reorganization in M/EEG multiplex brain networks
论文作者
论文摘要
脑部计算机界面(BCIS)构成了通信和控制的有前途的工具。但是,掌握非侵入性闭环系统仍然是一项学识渊博的技能,对于不可忽略的用户比例很难开发。所涉及的学习过程会导致与大脑网络重组相关的神经变化,而大脑网络的重组仍然知之甚少。为了解决这种受试者间的可变性,我们采用了一种多层方法来整合脑电图(EEG)(EEG)和磁脑摄影(MEG)数据,这是由四阶段BCI培训计划产生的,然后是一组健康的受试者。我们的方法可以访问每一层对多层网络的贡献,而多层网络往往与时间相等。我们表明,无论选择的模态如何,Alpha频段中体感区域的整合逐渐增加,这与Beta频段中视觉处理和工作记忆区域的整合的减少相似。值得注意的是,多层网络中只有大脑网络属性与Alpha2频段的未来BCI分数相关:在体感和决策相关领域,在相关领域中呈肯定。我们的发现给BCI培训的基础神经过程提供了新的启示。集成多模式的大脑网络属性提供了与行为性能相关的新信息,并且可以被视为BCI学习的潜在标志。
Brain-computer interfaces (BCIs) constitute a promising tool for communication and control. However, mastering non-invasive closed-loop systems remains a learned skill that is difficult to develop for a non-negligible proportion of users. The involved learning process induces neural changes associated with a brain network reorganization that remains poorly understood. To address this inter-subject variability, we adopted a multilayer approach to integrate brain network properties from electroencephalographic (EEG) and magnetoencephalographic (MEG) data resulting from a four-session BCI training program followed by a group of healthy subjects. Our method gives access to the contribution of each layer to multilayer network that tends to be equal with time. We show that regardless the chosen modality, a progressive increase in the integration of somatosensory areas in the alpha band was paralleled by a decrease of the integration of visual processing and working memory areas in the beta band. Notably, only brain network properties in multilayer network correlated with future BCI scores in the alpha2 band: positively in somatosensory and decision-making related areas and negatively in associative areas. Our findings cast new light on neural processes underlying BCI training. Integrating multimodal brain network properties provides new information that correlates with behavioral performance and could be considered as a potential marker of BCI learning.