论文标题
视频推荐的多模式主题学习
Multimodal Topic Learning for Video Recommendation
论文作者
论文摘要
视频推荐系统促进了深度神经网络,已取得了重大进展。现有的视频推荐系统直接利用不同模式(例如,用户个人数据,用户行为数据,视频标题,视频标签和视觉内容)的功能来输入深层神经网络,同时期望网络从这些功能中隐含在线矿山用户偏爱的主题。但是,缺乏语义主题信息的功能限制了准确的推荐生成。此外,使用视觉内容功能的特征交叉产生了高维度功能,从而大大降低了网络的在线计算效率。在本文中,我们明确将主题生成与推荐生成分开,提出了一种多模式学习算法,以利用三种模式(即标签,标题和封面图像),以使视频主题离线生成视频主题。拟议算法生成的主题是语义主题功能,可促进偏好范围确定和建议生成。此外,我们使用语义主题功能而不是视觉内容功能来有效降低在线计算成本。我们提出的算法已部署在Kuaibao信息流平台中。在线和离线评估结果表明,我们提出的算法表现出色。
Facilitated by deep neural networks, video recommendation systems have made significant advances. Existing video recommendation systems directly exploit features from different modalities (e.g., user personal data, user behavior data, video titles, video tags, and visual contents) to input deep neural networks, while expecting the networks to online mine user-preferred topics implicitly from these features. However, the features lacking semantic topic information limits accurate recommendation generation. In addition, feature crosses using visual content features generate high dimensionality features that heavily downgrade the online computational efficiency of networks. In this paper, we explicitly separate topic generation from recommendation generation, propose a multimodal topic learning algorithm to exploit three modalities (i.e., tags, titles, and cover images) for generating video topics offline. The topics generated by the proposed algorithm serve as semantic topic features to facilitate preference scope determination and recommendation generation. Furthermore, we use the semantic topic features instead of visual content features to effectively reduce online computational cost. Our proposed algorithm has been deployed in the Kuaibao information streaming platform. Online and offline evaluation results show that our proposed algorithm performs favorably.