论文标题

PSF-LO:基于参数化语义特征的激光镜射仪

PSF-LO: Parameterized Semantic Features Based Lidar Odometry

论文作者

Chen, Guibin, Wang, Bosheng, Wang, Xiaoliang, Deng, Huanjun, Wang, Bing, Zhang, Shuo

论文摘要

LIDAR ODOMETIRE(LO)是许多可靠,准确的本地化和自动驾驶映射系统的关键技术。最先进的方法通常利用几何信息来执行点云注册。此外,获取可以更丰富的点云语义信息来描述环境将有助于注册。我们提出了一种基于自我设计的参数化语义特征(PSF)的新型语义激光射击方法,以实时实现自动驾驶汽车的低饮用自动移动估计。我们首先使用基于卷积神经网络的算法从输入激光点云中获取点上的语义,然后使用语义标签将道路,建筑物,交通符号和类似极点的点云分开,并单独适合它们以获取相应的PSF。基于PSF的快速匹配使我们能够完善几何特征(GEFS)注册,从而降低了模糊的子束表面对GEF匹配的准确性的影响。此外,我们设计了一种有效的方法,可以准确识别和删除动态对象,同时将静态对象保留在语义点云中,这有助于进一步提高LO的准确性。我们在公共数据集Kitti Odometry基准测试中评估了我们的方法,即PSF-LO,在撰写时测试数据集中的平均翻译误差为0.82%。

Lidar odometry (LO) is a key technology in numerous reliable and accurate localization and mapping systems of autonomous driving. The state-of-the-art LO methods generally leverage geometric information to perform point cloud registration. Furthermore, obtaining point cloud semantic information which can describe the environment more abundantly will help for the registration. We present a novel semantic lidar odometry method based on self-designed parameterized semantic features (PSFs) to achieve low-drift ego-motion estimation for autonomous vehicle in realtime. We first use a convolutional neural network-based algorithm to obtain point-wise semantics from the input laser point cloud, and then use semantic labels to separate the road, building, traffic sign and pole-like point cloud and fit them separately to obtain corresponding PSFs. A fast PSF-based matching enable us to refine geometric features (GeFs) registration, reducing the impact of blurred submap surface on the accuracy of GeFs matching. Besides, we design an efficient method to accurately recognize and remove the dynamic objects while retaining static ones in the semantic point cloud, which are beneficial to further improve the accuracy of LO. We evaluated our method, namely PSF-LO, on the public dataset KITTI Odometry Benchmark and ranked #1 among semantic lidar methods with an average translation error of 0.82% in the test dataset at the time of writing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源