论文标题

推荐系统中的半截面表示学习

Semi-Disentangled Representation Learning in Recommendation System

论文作者

Chen, Weiguang, Jiang, Wenjun, Li, Xueqi, Li, Kenli, Zomaya, Albert, Wang, Guojun

论文摘要

由于其最大的紧凑性,可解释性和多功能性,在许多领域都广泛探索了脱离的表示形式。推荐系统还需要分开,以使代表性更容易解释和一般下游任务。但是,一些挑战会减慢其更广泛的应用 - 缺乏细粒度的标签和用户 - 项目相互作用的复杂性。为了减轻这些问题,我们提出了一种基于自动编码器的半截面表示学习方法(SDRL)。 SDRL将嵌入每个用户/项目分为两个部分:可解释的和无法解释的部分,以改善适当的分离,同时保留表示复杂的信息。可解释的零件由$内部\ block $组成,用于基于个体的功能,而基于相互作用的功能的$外部\ block $。无法解释的零件由$ other \ block $组成,用于其他剩余信息。三个现实世界数据集的实验结果表明,与现有表示方法相比,提出的SDRL不仅可以有效地表达用户和项目功能,而且可以提高解释性和通用性。

Disentangled representation has been widely explored in many fields due to its maximal compactness, interpretability and versatility. Recommendation system also needs disentanglement to make representation more explainable and general for downstream tasks. However, some challenges slow its broader application -- the lack of fine-grained labels and the complexity of user-item interactions. To alleviate these problems, we propose a Semi-Disentangled Representation Learning method (SDRL) based on autoencoders. SDRL divides each user/item embedding into two parts: the explainable and the unexplainable, so as to improve proper disentanglement while preserving complex information in representation. The explainable part consists of $internal\ block$ for individual-based features and $external\ block$ for interaction-based features. The unexplainable part is composed by $other\ block$ for other remaining information. Experimental results on three real-world datasets demonstrate that the proposed SDRL could not only effectively express user and item features but also improve the explainability and generality compared with existing representation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源