论文标题

使用互相关的高场溶液状态DNP

High-field solution state DNP using cross-correlations

论文作者

Concilio, Maria Grazia, Soundararajan, Murari, Frydman, Lucio, Kuprov, Ilya

论文摘要

在公共NMR仪器的磁场上,电子Zeeman频率太高,无法在溶液中发生有效的电子核核偶极交叉浮肿。因此,在没有各向同性超精细耦合的情况下,高磁磁体中液态状态动态核极化(DNP)的速率是omega^{ - 2} - 因此是不切实际的。然而,接触偶联和偶极交叉释放并不是唯一可以将电子磁化转移到液体中的核的机制:也存在多种交叉相关(CC)弛豫过程,涉及相互作用张量张量的各种型号的各种组合。这些过程中的某些过程的速率比偶性交叉解释具有更有利的高场行为,但是由于它们的数值(尤其是分析性)的困难,它们在很大程度上都没有医生。在此通信中,我们报告了1E1N和2E1N自旋系统液态下每个旋转驱动的松弛过程的分析评估,以及稳态DNP的数值优化,相对于自旋汉密尔顿参数。在2E1N系统中鉴定了先前未报告的互相关DNP(CCDNP)机制,涉及多个弛豫干扰效应和电子间交换耦合。使用模拟,我们发现了逼真的自旋汉密尔顿参数,在高磁场上与偶性交叉浮肿相比,在高磁场上产生更强的核极化。

At the magnetic fields of common NMR instruments, electron Zeeman frequencies are too high for efficient electron-nuclear dipolar cross-relaxation to occur in solution. The rate of that process fades with the electron Zeeman frequency as omega^{-2} - in the absence of isotropic hyperfine couplings, liquid state dynamic nuclear polarisation (DNP) in high-field magnets is therefore impractical. However, contact coupling and dipolar cross-relaxation are not the only mechanisms that can move electron magnetisation to nuclei in liquids: multiple cross-correlated (CC) relaxation processes also exist, involving various combinations of interaction tensor anisotropies. The rates of some of those processes have more favourable high-field behaviour than dipolar cross-relaxation, but due to the difficulty of their numerical - and particularly analytical - treatment, they remain largely uncharted. In this communication, we report analytical evaluation of every rotationally driven relaxation process in liquid state for 1e1n and 2e1n spin systems, as well as numerical optimisations of the steady-state DNP with respect to spin Hamiltonian parameters. A previously unreported cross-correlation DNP (CCDNP) mechanism was identified for the 2e1n system, involving multiple relaxation interference effects and inter-electron exchange coupling. Using simulations, we found realistic spin Hamiltonian parameters that yield stronger nuclear polarisation at high magnetic fields than dipolar cross-relaxation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源