论文标题
嵌套残基的数学特性及其在多环散射幅度中的应用
Mathematical properties of nested residues and their application to multi-loop scattering amplitudes
论文作者
论文摘要
多环多腿散射幅度的计算起着提高高能量煤层粒子物理学的理论预测精度的关键作用。在这项工作中,我们专注于Feynman积分的新颖集成级表示的数学属性,该属性基于Loop-Tree二元性(LTD)。我们探讨了多环迭代残基的行为,并通过首次开发一般的正式证明来明确显示与流离失所的电线相关的贡献被取消。其余残留物,称为嵌套残基,如最初在参考文献中引入。 \ cite {Verdugo:2020KZH},编码相关的物理信息,并自然映射到与Nondischinewoint On-Shell状态相关的物理配置上。通过进一步了解嵌套残基的数学结构,我们证明了非物理奇异性消失,并显示如何仅使用因果分母写出最终表达式。通过这种方式,我们为参考文献中提出的全环公式提供了数学证明。 \ cite {aguilera-verdugo:2020kc}。
The computation of multi-loop multi-leg scattering amplitudes plays a key role to improve the precision of theoretical predictions for particle physics at high-energy colliders. In this work, we focus on the mathematical properties of the novel integrand-level representation of Feynman integrals, which is based on the Loop-Tree Duality (LTD). We explore the behaviour of the multi-loop iterated residues and explicitly show, by developing a general formal proof for the first time, that contributions associated to displaced poles are cancelled out. The remaining residues, called nested residues as originally introduced in Ref. \cite{Verdugo:2020kzh}, encode the relevant physical information and are naturally mapped onto physical configurations associated to nondisjoint on-shell states. By going further on the mathematical structure of the nested residues, we prove that unphysical singularities vanish, and show how the final expressions can be written by using only causal denominators. In this way, we provide a mathematical proof for the all-loop formulae presented in Ref. \cite{Aguilera-Verdugo:2020kzc}.