论文标题
通过神经摊销的雷电引力波参数推断
Lightning-Fast Gravitational Wave Parameter Inference through Neural Amortization
论文作者
论文摘要
通过Markov链蒙特卡洛采样算法,常规分析了由Ligo测得和处女座检测器的紧凑型二进制物的重力波。因为对似然函数的评估需要评估数百万个波形模型,这些波形模型在信号形状和源参数之间链接,所以运行马尔可夫链,直到收敛通常昂贵,并且需要数天的计算。在这个扩展的摘要中,我们提供了一个概念证明,该证明说明了基于神经模拟的推理的最新进展如何通过最多三个数量级(从几天到几分钟)加快推理时间,而不会损害性能。我们的方法基于卷积神经网络,对可能性与证据比率建模,并完全摊销后部的计算。我们发现我们的模型正确估计了模拟重力波参数的可靠间隔。
Gravitational waves from compact binaries measured by the LIGO and Virgo detectors are routinely analyzed using Markov Chain Monte Carlo sampling algorithms. Because the evaluation of the likelihood function requires evaluating millions of waveform models that link between signal shapes and the source parameters, running Markov chains until convergence is typically expensive and requires days of computation. In this extended abstract, we provide a proof of concept that demonstrates how the latest advances in neural simulation-based inference can speed up the inference time by up to three orders of magnitude -- from days to minutes -- without impairing the performance. Our approach is based on a convolutional neural network modeling the likelihood-to-evidence ratio and entirely amortizes the computation of the posterior. We find that our model correctly estimates credible intervals for the parameters of simulated gravitational waves.