论文标题
用量化的第一积分量角周期地图
Pointwise periodic maps with quantized first integrals
论文作者
论文摘要
我们描述了表现出有趣的动态特征的平面上一些定期分段线性图的全局动力学。对于这些地图,我们找到了第一个积分。对于这些积分,一组值是离散的,因此进行了量化。此外,水平集是有限的集合,其内部由有限数量的某些常规或均匀镶嵌的开放式瓷砖形成。地图对每个不变的瓷砖集的作用都在几何上描述。
We describe the global dynamics of some pointwise periodic piecewise linear maps in the plane that exhibit interesting dynamic features. For each of these maps we find a first integral. For these integrals the set of values are discrete, thus quantized. Furthermore, the level sets are bounded sets whose interior is formed by a finite number of open tiles of certain regular or uniform tessellations. The action of the maps on each invariant set of tiles is described geometrically.