论文标题

通过基于数据合成的卷积编码器网络进行电磁源成像

Electromagnetic Source Imaging via a Data-Synthesis-Based Convolutional Encoder-Decoder Network

论文作者

Huang, Gexin, Liang, Jiawen, Liu, Ke, Cai, Chang, Gu, ZhengHui, Qi, Feifei, Li, Yuan Qing, Yu, Zhu Liang, Wu, Wei

论文摘要

电磁源成像(ESI)需要解决高度不良的反问题。为了寻求独特的解决方案,传统的ESI方法施加了各种形式的先验,这些方法可能无法准确反映实际的源属性,这可能会阻碍其广泛的应用。为了克服这一限制,在本文中,提出了一种新的数据合成的时空卷积编码器网络方法称为DST-Cednet的ESI。 DST-CEDNET将ESI重新铸造为机器学习问题,其中歧视性学习和潜在空间表示形式集成在卷积编码器码头网络(CEDNET)中,以从测得的脑电图/磁脑摄影学(E/MEG)信号中学习强大的映射到对脑活动的信号。特别是,通过纳入有关动态大脑活动的先验知识,设计了一种新型的数据合成策略来生成大规模样本,以有效训练Cednet。这与传统的ESI方法相反,在传统的ESI方法中,通常通过主要旨在用于数学便利的约束来实施先前的信息。广泛的数值实验以及对真实MEG和癫痫脑电图数据集的分析表明,DST-Cednet在多种源配置下稳健估计源信号的多种最新ESI方法的表现。

Electromagnetic source imaging (ESI) requires solving a highly ill-posed inverse problem. To seek a unique solution, traditional ESI methods impose various forms of priors that may not accurately reflect the actual source properties, which may hinder their broad applications. To overcome this limitation, in this paper a novel data-synthesized spatio-temporally convolutional encoder-decoder network method termed DST-CedNet is proposed for ESI. DST-CedNet recasts ESI as a machine learning problem, where discriminative learning and latent-space representations are integrated in a convolutional encoder-decoder network (CedNet) to learn a robust mapping from the measured electroencephalography/magnetoencephalography (E/MEG) signals to the brain activity. In particular, by incorporating prior knowledge regarding dynamical brain activities, a novel data synthesis strategy is devised to generate large-scale samples for effectively training CedNet. This stands in contrast to traditional ESI methods where the prior information is often enforced via constraints primarily aimed for mathematical convenience. Extensive numerical experiments as well as analysis of a real MEG and Epilepsy EEG dataset demonstrate that DST-CedNet outperforms several state-of-the-art ESI methods in robustly estimating source signals under a variety of source configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源