论文标题

不确定性意识到图形数据的半监督学习

Uncertainty Aware Semi-Supervised Learning on Graph Data

论文作者

Zhao, Xujiang, Chen, Feng, Hu, Shu, Cho, Jin-Hee

论文摘要

多亏了图神经网络(GNN),半监督节点分类显示了图数据中最新的性能。但是,GNN并未考虑与阶级概率相关的不同类型的不确定性,以最大程度地降低现实生活中不确定性下增加错误分类的风险。在这项工作中,我们使用GNN提出了一个多源不确定性框架,该框架反映了深度学习和信念/证据理论域中的各种预测性不确定性,用于节点分类预测。通过从给定的训练节点的标签中收集证据,设计基于图的内核dirichlet分布估计(GKDE)方法是为了准确预测节点级的dirichlet分布并检测出偏分布(OOD)节点。根据六个真实网络数据集的错误分类检测和OOD检测,我们与最先进的同行相比,我们验证了我们提出的模型的表现。我们发现,基于不和谐的检测在错误分类检测方面产生了最佳结果,而基于空置的检测是最适合OOD检测的结果。为了阐明结果的原因,我们提供了理论上的证据,该证据解释了本工作中考虑的不同类型的不确定性之间的关系。

Thanks to graph neural networks (GNNs), semi-supervised node classification has shown the state-of-the-art performance in graph data. However, GNNs have not considered different types of uncertainties associated with class probabilities to minimize risk of increasing misclassification under uncertainty in real life. In this work, we propose a multi-source uncertainty framework using a GNN that reflects various types of predictive uncertainties in both deep learning and belief/evidence theory domains for node classification predictions. By collecting evidence from the given labels of training nodes, the Graph-based Kernel Dirichlet distribution Estimation (GKDE) method is designed for accurately predicting node-level Dirichlet distributions and detecting out-of-distribution (OOD) nodes. We validated the outperformance of our proposed model compared to the state-of-the-art counterparts in terms of misclassification detection and OOD detection based on six real network datasets. We found that dissonance-based detection yielded the best results on misclassification detection while vacuity-based detection was the best for OOD detection. To clarify the reasons behind the results, we provided the theoretical proof that explains the relationships between different types of uncertainties considered in this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源