论文标题
大量的K3指标
A plethora of K3 metrics
论文作者
论文摘要
我们将最近对$ t^4/z_2 $ orbifold locus附近的K3指标的研究扩展到另一个圆环orbifold基因座。特别是,我们将K3表面的几种新结构作为Hyper-Kähler商,它们为K3指标提供了新的公式。然后,我们将它们与Arxiv的构建相关:1810.10540。作为推论,我们在Minahan-Nemeschansky Scfts的BPS光谱上获得了无限的限制,并具有$ e_n $ Global Symmetry。具体而言,我们发现隐藏在K3指标中的$ e_n $字符(在不同点进行评估)的线性组合,并计算其二阶Taylor扩展。我们还发现了这些SCFT的BPS光谱之间以及与$ su(2)$ $ n_f = 4 $ scft之间的新型牢固关系。最后,我们提供了这些SCFTS级构建的新推导,并陈述了有关其BPS光谱的一些实验观察。
We extend our recent study of K3 metrics near the $T^4/Z_2$ orbifold locus to the other torus orbifold loci. In particular, we provide several new constructions of K3 surfaces as hyper-Kähler quotients, which yield new formulae for K3 metrics. We then relate these to the construction of arXiv:1810.10540. As a corollary, we derive infinitely many constraints on the (as yet unknown) BPS spectra of the Minahan-Nemeschansky SCFTs with $E_n$ global symmetry. Specifically, we find linear combinations of $E_n$ characters (evaluated at different points) hiding within K3 metrics and we compute their second order Taylor expansions. We also find novel strong relationships between the BPS spectra of these SCFTs, as well as with that of the $SU(2)$ $N_f = 4$ SCFT. Finally, we provide a new derivation of the class S constructions of these SCFTs and state some experimental observations regarding their BPS spectra.