论文标题

原始二重网状卷积神经网络

Primal-Dual Mesh Convolutional Neural Networks

论文作者

Milano, Francesco, Loquercio, Antonio, Rosinol, Antoni, Scaramuzza, Davide, Carlone, Luca

论文摘要

几何深度学习的最新作品引入了神经网络,通过定义三角形网格的卷积(有时甚至汇总)操作,允许在三维几何数据上执行推理任务。但是,这些方法要么将输入网格视为图形,因此不利用网格的特定几何特性来进行特征聚集和下采样,或者专门用于网格,而是依靠对卷积的刚性定义,该卷积无法正确捕获网格的局部拓扑。我们提出了一种结合两种方法的优势的方法,同时解决了它们的局限性:我们将一个原始的偶型框架从图形神经网络文献绘制为三角形网格,并在两种类型的图形上定义了从输入网格构建的图形。我们的方法具有3D网格的边缘和面的特征作为输入,并使用注意机制将其动态聚集。同时,我们以精确的几何解释介绍了汇总操作,该操作允许以任务驱动的方式聚类网格面来处理网格连接性的变化。我们使用网格简化文献中的工具提供了方法的理论见解。此外,我们在形状分类和形状分割的任务中对我们的方法进行实验验证,在该任务中,我们获得了与最新状态的可比性或优越的性能。

Recent works in geometric deep learning have introduced neural networks that allow performing inference tasks on three-dimensional geometric data by defining convolution, and sometimes pooling, operations on triangle meshes. These methods, however, either consider the input mesh as a graph, and do not exploit specific geometric properties of meshes for feature aggregation and downsampling, or are specialized for meshes, but rely on a rigid definition of convolution that does not properly capture the local topology of the mesh. We propose a method that combines the advantages of both types of approaches, while addressing their limitations: we extend a primal-dual framework drawn from the graph-neural-network literature to triangle meshes, and define convolutions on two types of graphs constructed from an input mesh. Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them using an attention mechanism. At the same time, we introduce a pooling operation with a precise geometric interpretation, that allows handling variations in the mesh connectivity by clustering mesh faces in a task-driven fashion. We provide theoretical insights of our approach using tools from the mesh-simplification literature. In addition, we validate experimentally our method in the tasks of shape classification and shape segmentation, where we obtain comparable or superior performance to the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源