论文标题

为离线和在线无源域的适应施放诱饵

Casting a BAIT for Offline and Online Source-free Domain Adaptation

论文作者

Yang, Shiqi, Wang, Yaxing, van de Weijer, Joost, Herranz, Luis, Jui, Shangling

论文摘要

我们解决了无源域的适应(SFDA)问题,其中仅在适应目标域期间可用源模型。我们考虑两个设置:脱机设置,可以多次访问所有目标数据(时期),以得出每个目标样本的预测,以及目标数据在到达时需要直接分类的在线设置。受基于不同分类器的域适应方法的启发,在本文中,我们引入了第二个分类器,但另一个分类器头固定。适应目标域时,预计从源分类器初始初始化的分类器会找到错误分类的功能。接下来,在更新功能提取器时,将将这些功能推向源决策边界的右侧,从而实现无源域的适应。实验结果表明,与现有的DA和SFDA方法相比,该方法在几个基准数据集上获得了离线SFDA的竞争结果,我们的方法超过了在线无源域适应设置下的其他SFDA方法。

We address the source-free domain adaptation (SFDA) problem, where only the source model is available during adaptation to the target domain. We consider two settings: the offline setting where all target data can be visited multiple times (epochs) to arrive at a prediction for each target sample, and the online setting where the target data needs to be directly classified upon arrival. Inspired by diverse classifier based domain adaptation methods, in this paper we introduce a second classifier, but with another classifier head fixed. When adapting to the target domain, the additional classifier initialized from source classifier is expected to find misclassified features. Next, when updating the feature extractor, those features will be pushed towards the right side of the source decision boundary, thus achieving source-free domain adaptation. Experimental results show that the proposed method achieves competitive results for offline SFDA on several benchmark datasets compared with existing DA and SFDA methods, and our method surpasses by a large margin other SFDA methods under online source-free domain adaptation setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源