论文标题

关于脱钩的图形卷积网络和标签传播的等效性

On the Equivalence of Decoupled Graph Convolution Network and Label Propagation

论文作者

Dong, Hande, Chen, Jiawei, Feng, Fuli, He, Xiangnan, Bi, Shuxian, Ding, Zhaolin, Cui, Peng

论文摘要

图形卷积网络(GCN)夫妇的原始设计具有节点表示学习的转换和邻域聚合。最近,一些工作表明,耦合不如脱钩,它可以更好地支持深图传播,并已成为GCN的最新范式(例如AppNP和SGCN)。尽管有效,但脱钩GCN的工作机制尚不清楚。在本文中,我们从新颖而基本的角度 - 标签传播探索了半监督节点分类的脱钩GCN。我们进行了彻底的理论分析,证明了脱钩的GCN基本上与两步标签的传播基本相同:首先,沿图沿图形传播已知的标签,以生成未标记的节点的伪标记,第二个,第二个,第二个训练增强的PSEUDPSEUDPSEUDPSEUDPSENERAL网络分类器。更有趣的是,我们揭示了脱钩GCN的有效性:超越了传统的标签传播,它可以自动为伪标签数据分配结构和模型意识的权重。这解释了为什么解耦的GCN对结构噪声和过度光滑的效果相对稳健,但对标签噪声和模型初始化敏感。基于这种见解,我们提出了一种名为“传播”然后自适应训练(PTA)的新标签传播方法,该方法通过动态和自适应的加权策略克服了脱钩GCN的缺陷。与脱钩的GCN相比,我们的PTA更简单,更有效,更强大。我们从经验上验证了四个基准数据集上的发现,证明了我们方法的优势。该代码可在https://github.com/donghande/pt_propagation_then_training上找到。

The original design of Graph Convolution Network (GCN) couples feature transformation and neighborhood aggregation for node representation learning. Recently, some work shows that coupling is inferior to decoupling, which supports deep graph propagation better and has become the latest paradigm of GCN (e.g., APPNP and SGCN). Despite effectiveness, the working mechanisms of the decoupled GCN are not well understood. In this paper, we explore the decoupled GCN for semi-supervised node classification from a novel and fundamental perspective -- label propagation. We conduct thorough theoretical analyses, proving that the decoupled GCN is essentially the same as the two-step label propagation: first, propagating the known labels along the graph to generate pseudo-labels for the unlabeled nodes, and second, training normal neural network classifiers on the augmented pseudo-labeled data. More interestingly, we reveal the effectiveness of decoupled GCN: going beyond the conventional label propagation, it could automatically assign structure- and model- aware weights to the pseudo-label data. This explains why the decoupled GCN is relatively robust to the structure noise and over-smoothing, but sensitive to the label noise and model initialization. Based on this insight, we propose a new label propagation method named Propagation then Training Adaptively (PTA), which overcomes the flaws of the decoupled GCN with a dynamic and adaptive weighting strategy. Our PTA is simple yet more effective and robust than decoupled GCN. We empirically validate our findings on four benchmark datasets, demonstrating the advantages of our method. The code is available at https://github.com/DongHande/PT_propagation_then_training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源