论文标题

点和边缘奇点的指数恢复神经网络近似率

Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities

论文作者

Marcati, Carlo, Opschoor, Joost A. A., Petersen, Philipp C., Schwab, Christoph

论文摘要

我们通过$ h^1(ω)$在某些多层域$ω$中的加权分析函数类别$ h^1(ω)$中的稳定relu神经网络(relu nns)证明了指数表达性,在空间维度$ d = 2,3 $中。这些类中的功能是对开放子域的局部分析$ d \ subsetω$,但可能在$ω$的内部或边界$ \ partialω$的内部或拐角和边缘奇异点中显示出孤立的点奇异性。这里证明的指数表达速率界限暗示了解决方案家族的溶液家族对几个椭圆形边界和具有分析数据的特征值问题的均匀指数表达性。指数近似速率显示在空间尺寸中$ d = 2 $在Lipschitz多边形上,而空间尺寸$ d = 3 $在Fichera型多面体域上,带有平面面。建设性证明特别表明,相对于目标NN近似精度$ \ VAREPSILON> 0 $ in $ H^1(ω)$,NN的深度和大小会增加poly-logarith。该结果涵盖了具有分析数据的线性,二阶椭圆PDE的溶液集和某些非线性椭圆特征值问题,这些问题与电子结构模型中出现的分析非线性和单数,加权分析潜力有关。在后一种情况下,这些函数对应于在细胞核位置表现出分离的点奇异性的电子密度。我们的发现尤其是最近报道的数学基础,即在变异电子结构算法中的深层神经网络的成功使用。

We prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in $H^1(Ω)$ for weighted analytic function classes in certain polytopal domains $Ω$, in space dimension $d=2,3$. Functions in these classes are locally analytic on open subdomains $D\subset Ω$, but may exhibit isolated point singularities in the interior of $Ω$ or corner and edge singularities at the boundary $\partial Ω$. The exponential expression rate bounds proved here imply uniform exponential expressivity by ReLU NNs of solution families for several elliptic boundary and eigenvalue problems with analytic data. The exponential approximation rates are shown to hold in space dimension $d = 2$ on Lipschitz polygons with straight sides, and in space dimension $d=3$ on Fichera-type polyhedral domains with plane faces. The constructive proofs indicate in particular that NN depth and size increase poly-logarithmically with respect to the target NN approximation accuracy $\varepsilon>0$ in $H^1(Ω)$. The results cover in particular solution sets of linear, second order elliptic PDEs with analytic data and certain nonlinear elliptic eigenvalue problems with analytic nonlinearities and singular, weighted analytic potentials as arise in electron structure models. In the latter case, the functions correspond to electron densities that exhibit isolated point singularities at the positions of the nuclei. Our findings provide in particular mathematical foundation of recently reported, successful uses of deep neural networks in variational electron structure algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源