论文标题

Bite-GCN:通过双向拓扑结构的新GCN体系结构和文本丰富的网络上的功能

BiTe-GCN: A New GCN Architecture via BidirectionalConvolution of Topology and Features on Text-Rich Networks

论文作者

Jin, Di, Song, Xiangchen, Yu, Zhizhi, Liu, Ziyang, Zhang, Heling, Cheng, Zhaomeng, Han, Jiawei

论文摘要

旨在通过堆叠的图形卷积层集成高阶邻域信息的图形卷积网络(GCN)在许多网络分析任务中都表现出了显着的功能。但是,拓扑局限性(包括过度平滑的和本地拓扑同义)限制了其代表网络的能力。现有研究仅在网络拓扑上执行功能卷积,这不可避免地在拓扑和特征之间引入不平衡。考虑到在现实世界中,信息网络不仅包括节点级引文信息,还包括本地文本序列信息。我们提出了Bite-GCN,这是一种新型的GCN体系结构,具有拓扑和特征在文本丰富的网络上的双向卷积,以解决这些局限性。我们首先将原始文本富裕的网络转换为增强的双型异质网络,从文本中捕获全局节点级信息和本地文本序列信息。然后,我们引入歧视性卷积机制,以同时执行拓扑和特征的卷积。关于文本丰富的网络的广泛实验表明,我们的新体系结构通过突破的改进优于最先进的实验。此外,此体系结构还可以应用于JD搜索等几个电子商务搜索场景。 JD数据集上的实验验证了所提出的体系结构优于相关方法。

Graph convolutional networks (GCNs), aiming to integrate high-order neighborhood information through stacked graph convolution layers, have demonstrated remarkable power in many network analysis tasks. However, topological limitations, including over-smoothing and local topology homophily, limit its capability to represent networks. Existing studies only perform feature convolution on network topology, which inevitably introduces unbalance between topology and features. Considering that in real world, the information network consists of not only the node-level citation information but also the local text-sequence information. We propose BiTe-GCN, a novel GCN architecture with bidirectional convolution of both topology and features on text-rich networks to solve these limitations. We first transform the original text-rich network into an augmented bi-typed heterogeneous network, capturing both the global node-level information and the local text-sequence information from texts. We then introduce discriminative convolution mechanisms to performs convolutions of both topology and features simultaneously. Extensive experiments on text-rich networks demonstrate that our new architecture outperforms state-of-the-art by a breakout improvement. Moreover, this architecture can also be applied to several e-commerce searching scenes such as JD searching. The experiments on the JD dataset validate the superiority of the proposed architecture over the related methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源