论文标题

方面情感分类的注意转移网络

Attention Transfer Network for Aspect-level Sentiment Classification

论文作者

Zhao, Fei, Wu, Zhen, Dai, Xinyu

论文摘要

方面级别的情感分类(ASC)旨在检测句子中给定意见目标的情感极性。在基于神经网络的ASC方法中,大多数作品都采用了注意机制来捕获观点目标的相应情感词,然后将它们汇总为推断目标情绪的证据。但是,由于注释的复杂性,方面级数据集都相对较小。数据稀缺会导致注意机制有时无法专注于目标的相应情感词,这最终削弱了神经模型的性能。为了解决这个问题,我们在本文中提出了一个新颖的注意转移网络(ATN),该网络可以成功利用资源丰富的文档级别的情感分类数据集利用注意力知识,以提高方面级别情感分类任务的注意力能力。在ATN模型中,我们设计了两种不同的方法来转移注意力知识并在两个ASC基准数据集上进行实验。广泛的实验结果表明,我们的方法始终超过最先进的作品。进一步的分析还验证了ATN的有效性。

Aspect-level sentiment classification (ASC) aims to detect the sentiment polarity of a given opinion target in a sentence. In neural network-based methods for ASC, most works employ the attention mechanism to capture the corresponding sentiment words of the opinion target, then aggregate them as evidence to infer the sentiment of the target. However, aspect-level datasets are all relatively small-scale due to the complexity of annotation. Data scarcity causes the attention mechanism sometimes to fail to focus on the corresponding sentiment words of the target, which finally weakens the performance of neural models. To address the issue, we propose a novel Attention Transfer Network (ATN) in this paper, which can successfully exploit attention knowledge from resource-rich document-level sentiment classification datasets to improve the attention capability of the aspect-level sentiment classification task. In the ATN model, we design two different methods to transfer attention knowledge and conduct experiments on two ASC benchmark datasets. Extensive experimental results show that our methods consistently outperform state-of-the-art works. Further analysis also validates the effectiveness of ATN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源