论文标题
使用一般性自行车饲料规范(GBFS)数据的微型旅行来源和目的地推断
Micromobility Trip Origin and Destination Inference Using General Bikeshare Feed Specification (GBFS) Data
论文作者
论文摘要
新兴的微型企业服务(例如,电子示波器)具有增强城市流动性的巨大潜力,但需要更多关于其使用模式的知识。一般的Bikeshare feed规范(GBFS)数据是检查微型旅行模式的可能来源,但是需要努力从GBFS数据中推断出旅行。现有的Trip推理方法通常是基于以下假设:微型驾驶选项的车辆ID(电子驾驶室或电子自行车)不会更改,因此他们无法使用随时间变化的车辆ID处理数据。在这项研究中,我们提出了一套综合算法包装,以从具有不同类型的车辆ID的GBFS数据中推断出跳闸起源和目的地。我们通过分析由六家供应商发布的GBFS数据的一周(2020年2月上周)通过分析一周(2020年2月上周),并通过R-squared,平均绝对错误和SUM绝对错误评估了拟议算法的推理准确性,从而实施了算法。我们发现,当用400m*400m网格评估算法时,R平方测量大于0.9,MAE度量小于2,并且在市区地区,绝对错误相对较大。对于大多数实际应用,Trip-Temprention算法的准确性足够高。
Emerging micromobility services (e.g., e-scooters) have a great potential to enhance urban mobility but more knowledge on their usage patterns is needed. The General Bikeshare Feed Specification (GBFS) data are a possible source for examining micromobility trip patterns, but efforts are needed to infer trips from the GBFS data. Existing trip inference methods are usually based upon the assumption that the vehicle ID of a micromobility option (e-scooter or e-bike) does not change, and so they cannot deal with data with vehicle IDs that change over time. In this study, we propose a comprehensive package of algorithms to infer trip origins and destinations from GBFS data with different types of vehicle ID. We implement the algorithms in Washington DC by analyzing one-week (last week of February 2020) of GBFS data published by six vendors, and we evaluate the inference accuracy of the proposed algorithms by R-squared, mean absolute error, and sum absolute error. We find that the R-squared measure is larger than 0.9 and the MAE measure is smaller than 2 when the algorithms are evaluated with a 400m*400m grid, and the absolute errors are relatively larger in the downtown area. The accuracy of the trip-inference algorithms is sufficiently high for most practical applications.