论文标题
关于公开可用的新闻和信息转移到金融市场的影响
On the impact of publicly available news and information transfer to financial markets
论文作者
论文摘要
我们量化了从万维网到金融市场的大规模公开新闻文章的传播和吸收。为了提取公开可用的信息,我们使用了Common Crawl的新闻档案,这是一个非营利性组织,该组织抓取了网络的很大一部分。我们开发了一条处理管道,以确定与组成公司相关的新闻文章,该公司是S \&P 500指数,这是一种衡量美国公司股票绩效的股票市场指数。使用机器学习技术,我们从通用爬网新闻数据中提取情感分数,并采用信息理论的工具来量化从公共新闻文章到美国股票市场的信息传输。此外,我们通过简单的基于情感的投资组合交易策略来分析和量化基于新闻的信息的经济意义。我们的发现在万维网公开新闻中为这些信息提供了支持,对金融市场的事件具有统计和经济上的重要影响。
We quantify the propagation and absorption of large-scale publicly available news articles from the World Wide Web to financial markets. To extract publicly available information, we use the news archives from the Common Crawl, a nonprofit organization that crawls a large part of the web. We develop a processing pipeline to identify news articles associated with the constituent companies in the S\&P 500 index, an equity market index that measures the stock performance of U.S. companies. Using machine learning techniques, we extract sentiment scores from the Common Crawl News data and employ tools from information theory to quantify the information transfer from public news articles to the U.S. stock market. Furthermore, we analyze and quantify the economic significance of the news-based information with a simple sentiment-based portfolio trading strategy. Our findings provides support for that information in publicly available news on the World Wide Web has a statistically and economically significant impact on events in financial markets.