论文标题
两个相互作用的超速分子在陷阱中的磁力和淬灭动力学
Magnetic properties and quench dynamics of two interacting ultracold molecules in a trap
论文作者
论文摘要
从理论上讲,我们在外部电场和磁场中的一维谐波陷阱中研究了两个相互作用的超速极性和顺磁分子的磁性和非平衡动力学。分子通过多通道的两体接触电势相互作用,结合了分子间相互作用的短距离各向异性。我们表明,各种磁化状态来自分子相互作用,电子自旋,偶极矩,旋转结构,外部场和自旋旋转耦合的相互作用。丰富的磁化图主要取决于分子间相互作用和自旋旋转耦合的各向异性。这些特定的分子特性在计算或测量方面具有挑战性。因此,我们提出了从观察分析系统的时间演变中提取它们的淬灭动力学实验。我们的结果表明,使用外部电场控制分子几体磁化的可能性,并为研究被困在光学镊子或光学晶格中的超低分子的磁化铺平了道路,以及它们在分子多键入多型尼古尔多体元素汉密尔顿和量化信息存储的量子模拟中的应用。
We theoretically investigate the magnetic properties and nonequilibrium dynamics of two interacting ultracold polar and paramagnetic molecules in a one-dimensional harmonic trap in external electric and magnetic fields. The molecules interact via a multichannel two-body contact potential, incorporating the short-range anisotropy of intermolecular interactions. We show that various magnetization states arise from the interplay of the molecular interactions, electronic spins, dipole moments, rotational structures, external fields, and spin-rotation coupling. The rich magnetization diagrams depend primarily on the anisotropy of the intermolecular interaction and the spin-rotation coupling. These specific molecular properties are challenging to calculate or measure. Therefore, we propose the quench dynamics experiments for extracting them from observing the time evolution of the analyzed system. Our results indicate the possibility of controlling the molecular few-body magnetization with the external electric field and pave the way towards studying the magnetization of ultracold molecules trapped in optical tweezers or optical lattices and their application in quantum simulation of molecular multichannel many-body Hamiltonians and quantum information storing.