论文标题

COVID-19建模和可视化的基于视觉分析的决策环境

A Visual Analytics Based Decision Making Environment for COVID-19 Modeling and Visualization

论文作者

Afzal, Shehzad, Ghani, Sohaib, Jenkins-Smith, Hank C., Ebert, David S., Hadwiger, Markus, Hoteit, Ibrahim

论文摘要

与Covid-19这样的大流行技术打交道的公共卫生官员必须评估和准备响应计划。这个计划阶段不仅需要使用模拟模型来研究大流行的时空动态和影响,而且还需要计划并确保在不同的传播情况下提供资源的可用性。为此,我们开发了一个视觉分析环境,使公共卫生官员能够通过提供县级信息,例如人口,人口统计和医院病床来建模,模拟和探索Covid-19的传播。这种环境有助于用户通过带有链接的统计观点的地理空间地图探索与Covid-19相关的时空模型仿真数据,在不同时间点应用不同的决策指标,并了解其潜在影响。用户可以向县级细节进行钻探,例如随着时间的推移,这些统计数据的疾病,死亡,住院需求以及这些统计数据的变化。我们通过用例研究证明了这种环境的有用性,还提供了域专家的反馈。我们还提供有关此工作的未来扩展和潜在应用的详细信息。

Public health officials dealing with pandemics like COVID-19 have to evaluate and prepare response plans. This planning phase requires not only looking into the spatiotemporal dynamics and impact of the pandemic using simulation models, but they also need to plan and ensure the availability of resources under different spread scenarios. To this end, we have developed a visual analytics environment that enables public health officials to model, simulate, and explore the spread of COVID-19 by supplying county-level information such as population, demographics, and hospital beds. This environment facilitates users to explore spatiotemporal model simulation data relevant to COVID-19 through a geospatial map with linked statistical views, apply different decision measures at different points in time, and understand their potential impact. Users can drill-down to county-level details such as the number of sicknesses, deaths, needs for hospitalization, and variations in these statistics over time. We demonstrate the usefulness of this environment through a use case study and also provide feedback from domain experts. We also provide details about future extensions and potential applications of this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源