论文标题
Landau-Ginzburg模型中的分类墙壁交叉
Categorical Wall-Crossing in Landau-Ginzburg Models
论文作者
论文摘要
我们描述了如何在二维$ \ Mathcal {n} =(2,2)$模型中跨越边缘稳定性的墙壁上的分类BPS数据如何跳过边缘稳定性的墙壁。我们表明,只有当$ a _ {\ infty} $ - 在墙壁两侧构建的半bps麸皮类别时,我们的跳跃公式才能保持。这些结果可以看作是Cecotti-Vafa墙面配方的分类增强。
We describe how categorical BPS data including chain complexes of solitons, CPT pairings, and interior amplitudes jump across a wall of marginal stability in two-dimensional $\mathcal{N}=(2,2)$ models. We show that our jump formulas hold if and only if the $A_{\infty}$-categories of half-BPS branes constructed on either side of the wall are homotopy equivalent. These results can be viewed as categorical enhancements of the Cecotti-Vafa wall-crossing formula.