论文标题
神经过程的分解神经过程:$ k $ - 神经反应的预测
Factorized Neural Processes for Neural Processes: $K$-Shot Prediction of Neural Responses
论文作者
论文摘要
近年来,人工神经网络已经达到了最先进的性能,以预测自然刺激对视觉皮层中神经元的反应。但是,它们需要一个耗时的参数优化过程,以准确地对新观察到的神经元的调谐功能进行建模,该过程禁止许多应用,包括实时的,闭环实验。我们通过将问题提出为$ k $的预测来克服这一限制,以直接从一组使用神经过程的一组刺激 - 反应对来推断神经元的调整函数。这要求我们开发出一个分解的神经过程,该过程将观察到的设置嵌入到接受场位置和调谐功能属性中的潜在空间中。我们在模拟反应中表明,从分解的神经过程方法接地真理的预测和重建接收场随越来越多的试验。至关重要的是,总结神经元调谐功能的潜在表示是在快速单次通过网络中推断出来的。最后,我们在Visual Cortex的真实神经数据上验证了这种方法,并发现预测精度可与基于优化的方法相当,而且对于小$ K $甚至大于优化的方法。我们认为,这个新颖的深度学习系统识别框架将有助于将人工神经网络建模更好地实时整合到神经科学实验中。
In recent years, artificial neural networks have achieved state-of-the-art performance for predicting the responses of neurons in the visual cortex to natural stimuli. However, they require a time consuming parameter optimization process for accurately modeling the tuning function of newly observed neurons, which prohibits many applications including real-time, closed-loop experiments. We overcome this limitation by formulating the problem as $K$-shot prediction to directly infer a neuron's tuning function from a small set of stimulus-response pairs using a Neural Process. This required us to developed a Factorized Neural Process, which embeds the observed set into a latent space partitioned into the receptive field location and the tuning function properties. We show on simulated responses that the predictions and reconstructed receptive fields from the Factorized Neural Process approach ground truth with increasing number of trials. Critically, the latent representation that summarizes the tuning function of a neuron is inferred in a quick, single forward pass through the network. Finally, we validate this approach on real neural data from visual cortex and find that the predictive accuracy is comparable to -- and for small $K$ even greater than -- optimization based approaches, while being substantially faster. We believe this novel deep learning systems identification framework will facilitate better real-time integration of artificial neural network modeling into neuroscience experiments.