论文标题

基于张量分解和最大相关标准,可靠的低英尺量张量完成

Robust Low-tubal-rank Tensor Completion based on Tensor Factorization and Maximum Correntopy Criterion

论文作者

He, Yicong, Atia, George K.

论文摘要

张量完成的目的是通过利用其低级属性来从其条目的子集中恢复张量。在张量等级的几个有用的定义中,低英寸级别被证明可以对张量的固有低级结构具有有价值的表征。尽管最近提出了一些具有良好性能的低管量张量完成算法,但这些算法利用二阶统计量来测量误差残差,当观察到的条目包含大异常值时,这种算法可能无法正常工作。在本文中,我们提出了一个新的目标函数,以用于低英尺量张量的完成,该功能使用Correntropy作为误差度量来减轻异常值的效果。为了有效地优化所提出的目标,我们利用了半季度最小化技术,从而将优化转化为加权的低英尺量张量分解问题。随后,我们提出了两种简单有效的算法,以获取解决方案并提供其收敛性和复杂性分析。使用合成数据和实际数据的数值结果证明了所提出算法的稳健性和出色性能。

The goal of tensor completion is to recover a tensor from a subset of its entries, often by exploiting its low-rank property. Among several useful definitions of tensor rank, the low-tubal-rank was shown to give a valuable characterization of the inherent low-rank structure of a tensor. While some low-tubal-rank tensor completion algorithms with favorable performance have been recently proposed, these algorithms utilize second-order statistics to measure the error residual, which may not work well when the observed entries contain large outliers. In this paper, we propose a new objective function for low-tubal-rank tensor completion, which uses correntropy as the error measure to mitigate the effect of the outliers. To efficiently optimize the proposed objective, we leverage a half-quadratic minimization technique whereby the optimization is transformed to a weighted low-tubal-rank tensor factorization problem. Subsequently, we propose two simple and efficient algorithms to obtain the solution and provide their convergence and complexity analysis. Numerical results using both synthetic and real data demonstrate the robust and superior performance of the proposed algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源