论文标题

分布式非本地最佳控制

Distributed-Order Non-Local Optimal Control

论文作者

Ndairou, Faical, Torres, Delfim F. M.

论文摘要

Caputo在20世纪末已引入和研究了分布式分数非本地运算符。它们从某种意义上概括了分数阶衍生物/积分,即该运算符是由一定范围内不同差异的加权积分来定义的。由于其在建模某些复杂的现实现象时的应用,因此目前的分布式非本地衍生物的主题目前处于强大的发展。分数最佳控制理论涉及由分数控制系统的性能指数功能的优化。经典和分数最佳控制中最重要的结果之一是Pontryagin最大原理,该原理提供了必要的最佳条件,即对优化问题的每个解决方案都必须验证。在我们的工作中,我们通过根据分布式分数衍生物考虑动力学系统约束来扩展分数最佳控制理论。确切地说,我们证明了Pontryagin的最大原理的薄弱版本,并且在适当的凸度假设下是足够的最佳条件。

Distributed-order fractional non-local operators have been introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical systems constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin's maximum principle and a sufficient optimality condition under appropriate convexity assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源