论文标题
DeepGalaxy:使用深神经网络从图像中推断出星系合并的特性
DeepGalaxy: Deducing the Properties of Galaxy Mergers from Images Using Deep Neural Networks
论文作者
论文摘要
星系合并是两个星系碰撞的动力学过程,是宇宙中最壮观的现象之一。在此过程中,两个碰撞星系潮汐破坏,产生随时间变化而演变的重要视觉特征。这些视觉特征包含有价值的线索,用于推论星系合并的物理特性。在这项工作中,我们提出了DeepGalaxy,这是一个视觉分析框架,旨在根据其形态来预测星系合并的物理特性。 DeepGalaxy基于编码器架构架构,将输入图像编码为压缩潜在空间$ z $,并根据潜在空间距离确定图像的相似性。 DeepGalaxy由一个完全卷积的自动编码器(FCAE)组成,该自动编码器(FCAE)在其3D潜在空间下生成激活图,以及一个变异自动编码器(VAE),将激活映射压缩到1D矢量中,以及从激活图中产生标签的分类器。 FCAE的骨干可以根据图像的复杂性进行完全定制。 DeepGalaxy在并行机器上表现出出色的缩放性能。在努力超级计算机上,对128名工人进行培训时,缩放效率超过0.93,在接受512名工人培训时,缩放效率高于0.73。不必进行昂贵的数值模拟,DeepGalaxy直接从图像中推断出星系合并的物理特性,从而达到了$ \ sim 10^5 $的加速系数。
Galaxy mergers, the dynamical process during which two galaxies collide, are among the most spectacular phenomena in the Universe. During this process, the two colliding galaxies are tidally disrupted, producing significant visual features that evolve as a function of time. These visual features contain valuable clues for deducing the physical properties of the galaxy mergers. In this work, we propose DeepGalaxy, a visual analysis framework trained to predict the physical properties of galaxy mergers based on their morphology. Based on an encoder-decoder architecture, DeepGalaxy encodes the input images to a compressed latent space $z$, and determines the similarity of images according to the latent-space distance. DeepGalaxy consists of a fully convolutional autoencoder (FCAE) which generates activation maps at its 3D latent-space, and a variational autoencoder (VAE) which compresses the activation maps into a 1D vector, and a classifier that generates labels from the activation maps. The backbone of the FCAE can be fully customized according to the complexity of the images. DeepGalaxy demonstrates excellent scaling performance on parallel machines. On the Endeavour supercomputer, the scaling efficiency exceeds 0.93 when trained on 128 workers, and it maintains above 0.73 when trained with 512 workers. Without having to carry out expensive numerical simulations, DeepGalaxy makes inferences of the physical properties of galaxy mergers directly from images, and thereby achieves a speedup factor of $\sim 10^5$.