论文标题

使用改编版的蒙特卡洛树搜索搜索空间树搜索组合优化问题

Exploring search space trees using an adapted version of Monte Carlo tree search for combinatorial optimization problems

论文作者

Jooken, Jorik, Leyman, Pieter, Wauters, Tony, De Causmaecker, Patrick

论文摘要

在本文中,我们提出了一种启发式算法,以探索与组合优化问题实例相关的搜索空间树。该算法基于蒙特卡洛树搜索,这是一种流行的游戏玩法算法,用于探索游戏树,代表许多游戏的最新算法。提出了对蒙特卡洛树搜索的几种增强功能,使该算法更适合在组合优化环境中。这些增强功能利用了问题的组合结构,并旨在通过使用启发式模拟策略修剪子树来有效地探索搜索空间树,从而通过消除主导的价值分配并使用光束宽度来减少变量的域。该算法是针对两个组合优化问题专门量身定制的:Quay Crane调度问题与非跨限制和0-1 Knapsack问题的专门定制的组件。对于第一个问题,我们的算法超过了最先进的结果,并且在基准一组实例中找到了一些新的最佳解决方案。对于第二个问题,我们的算法通常会产生近乎最佳的解决方案,这些解决方案比最先进的结果稍差,但仅需要一小部分时间才能这样做。这些结果表明,对于两个完全不同的组合优化问题,该算法与最先进的算法具有竞争力。

In this article we propose a heuristic algorithm to explore search space trees associated with instances of combinatorial optimization problems. The algorithm is based on Monte Carlo tree search, a popular algorithm in game playing that is used to explore game trees and represents the state-of-the-art algorithm for a number of games. Several enhancements to Monte Carlo tree search are proposed that make the algorithm more suitable in a combinatorial optimization context. These enhancements exploit the combinatorial structure of the problem and aim to efficiently explore the search space tree by pruning subtrees, using a heuristic simulation policy, reducing the domains of variables by eliminating dominated value assignments and using a beam width. The algorithm was implemented with its components specifically tailored to two combinatorial optimization problems: the quay crane scheduling problem with non-crossing constraints and the 0-1 knapsack problem. For the first problem our algorithm surpasses the state-of-the-art results and several new best solutions are found for a benchmark set of instances. For the second problem our algorithm typically produces near-optimal solutions that are slightly worse than the state-of-the-art results, but it needs only a small fraction of the time to do so. These results indicate that the algorithm is competitive with the state-of-the-art for two entirely different combinatorial optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源