论文标题

展开用于压缩多通道盲解的神经网络

Unfolding Neural Networks for Compressive Multichannel Blind Deconvolution

论文作者

Tolooshams, Bahareh, Mulleti, Satish, Ba, Demba, Eldar, Yonina C.

论文摘要

我们提出了一个学识渊博的结构化神经网络,以解决压缩的稀疏多通道盲目卷积问题。在此问题中,每个通道的测量值都作为公共信号和稀疏过滤器的卷积。与先前的作品不同,通过随机投影或应用固定的结构化压缩矩阵实现压缩,本文提议从数据中学习压缩矩阵。鉴于完整的测量结果,建议的网络以无监督的方式进行培训,以学习来源和估计稀疏过滤器。然后,鉴于估计的来源,我们在优化信号重建和稀疏滤波器恢复的同时学习一个结构化压缩操作员。压缩的有效结构允许其实际的硬件实现。提出的神经网络是一种基于展开方法构建的自动编码器:训练后,编码器将压缩测量结果映射到使用压缩操作员和源的稀疏过滤器的估计值中,以及线性卷积解码器将完整的测量重建。我们证明,就稀疏滤波器恢复的准确性和速度而言,我们的方法优于经典的结构性压缩稀疏多通道盲目卷积方法。

We propose a learned-structured unfolding neural network for the problem of compressive sparse multichannel blind-deconvolution. In this problem, each channel's measurements are given as convolution of a common source signal and sparse filter. Unlike prior works where the compression is achieved either through random projections or by applying a fixed structured compression matrix, this paper proposes to learn the compression matrix from data. Given the full measurements, the proposed network is trained in an unsupervised fashion to learn the source and estimate sparse filters. Then, given the estimated source, we learn a structured compression operator while optimizing for signal reconstruction and sparse filter recovery. The efficient structure of the compression allows its practical hardware implementation. The proposed neural network is an autoencoder constructed based on an unfolding approach: upon training, the encoder maps the compressed measurements into an estimate of sparse filters using the compression operator and the source, and the linear convolutional decoder reconstructs the full measurements. We demonstrate that our method is superior to classical structured compressive sparse multichannel blind-deconvolution methods in terms of accuracy and speed of sparse filter recovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源